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Outline

Review of last lecture: Hashing

Binary Search Trees
Traversals
Search/Insertion/Deletion
TreeSort
Expected depth

Slides modified from
• www.cse.unr.edu/~bebis/CS477/ 
• homes.ieu.edu.tr/cevrendilek/CE221_week_10_Chapter4_TreesBST.ppt
• http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j
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Hashing
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Methods of Collision Resolution
Chaining:

Store all elements that hash to the 
same slot in a linked list.
Store a pointer to the head of the 
linked list in the hash table slot.

Open Addressing:
All elements stored in hash table 
itself.
When collisions occur, use a 
systematic (consistent) procedure 
to store (and search for) elements 
in free slots of the table.
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Choosing A Hash Function
Choosing the hash function well is crucial

Bad hash function puts all elements in same 
slot
A good hash function:

Should distribute keys uniformly into slots
Should not depend on patterns in the data

We discussed two methods:
Division method
Multiplication method

One more in worth mentioning
Universal hashing
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Binary Search Trees

6



Binary Search Trees
Tree representation:

A linked data structure in which a 
set of nodes is connected into a 
tree

Node representation:
Key field
Satellite data
Left: pointer to left child
Right: pointer to right child
p: pointer to parent (p [root [T]] 
= NIL)

Satisfies the binary-search-tree 
property 

Left child Right child

L R
parent

key data
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Binary Search Tree Property

Binary search tree order 
property:

If y is in left subtree of x, 
then key [y] ≤ key [x]

If y is in right subtree of x, 
then key [y] ≥ key [x]
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Binary Search Trees
Support *many* dynamic set operations 

SEARCH, MINIMUM, MAXIMUM, 
PREDECESSOR, SUCCESSOR, INSERT, 
DELETE

In particular, a Binary Search Tree (BST) 
can implement both the Dictionary and the 
Priority Queue abstract data types
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Binary Search Trees
Running time of basic operations on binary 
search trees

On average: Θ(lg n) [Really O(h), h = height of 
tree]

The expected height of the tree is lg n (balanced 
case)

In the worst case: Θ(n)
The tree is a linear chain of n nodes (unbalanced 
case)
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Best/Worst Case
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Traversing a Binary Search Tree
Inorder tree walk (traversal):

Root is visited between the visits of its left and 
right subtrees: left, root, right
Keys are visited in sorted order

Preorder tree walk:
root visited first: root, left, right

Postorder tree walk:
root visited last: left, right, root
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Preorder: 5 3 2 5 7 9

Inorder: 2 3 5 5 7 9

Postorder: 2 5 3 9 7 5
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Traversing a Binary Search 
Tree

Alg: INORDER-TREE-WALK(x)
1. if x ≠ NIL
2. then INORDER-TREE-WALK ( left [x] )
3. visit/print key [x]
4. INORDER-TREE-WALK ( right [x] )

E.g.:

Running time:
Θ(n), where n is the size of the tree rooted at x
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Searching for a Key

Given a pointer to the root of a tree and a key k:
Return a pointer to a node with key k
(if one exists)
Otherwise return NIL 

Idea
Starting at the root: trace down a path by comparing k with the 
key of the current node:

If k = key[x], we have found the key
If k < key[x], search in the left subtree of x
If k > key[x], search in the right subtree of x
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Example: TREE-SEARCH

Search for key 13:
15 → 6 → 7 → 13
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Searching for a Key
Alg: TREE-SEARCH(x, k)

1. if x = NIL or k = key [x]
2. then return x
3. if k < key [x]
4. then return TREE-SEARCH(left [x], k)
5. else return TREE-SEARCH(right [x], k)

Running Time: O (h),
h – the height of the tree
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Finding the Minimum 
in a Binary Search Tree

Goal: find the minimum value in a 
BST

Following left child pointers from the 
root, until a NIL is encountered

Alg: TREE-MINIMUM(x)
1. while left [x] ≠ NIL
2. do x ← left [x]
3. return x

Running time: O(h), h = height of tree

3

2 4

6

7

13

15

18

17 20

9

Minimum = 2

17



Finding the Maximum 
in a Binary Search Tree
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Maximum = 20

Goal: find the maximum value in a 
BST

Following right child pointers from the 
root, until a NIL is encountered

Alg: TREE-MAXIMUM(x)
1. while right [x] ≠ NIL
2. do x ← right [x]
3. return x

Running time: O(h), h = height of tree 18



Successor
Def: successor (x ) = y, such that key [y] is the 

smallest key > key [x]
E.g.: successor (15) =

successor (13) =
successor (9) =

Case 1: right (x) is non empty
successor (x ) = the minimum in right (x)

Case 2: right (x) is empty
go up the tree until the current node is a left child: 
successor (x ) is the parent of the current node
if you cannot go further (and you reached the 
root):    x is the largest element
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Finding the Successor

Alg: TREE-SUCCESSOR(x)
1. if right [x] ≠ NIL
2. then return TREE-MINIMUM(right [x])
3. y ← p[x]
4. while y ≠ NIL and x = right [y]
5. do x ← y
6. y ← p[y]
7. return y

Running time: O (h), h = height of the tree
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Predecessor
Def: predecessor (x ) = y, such that key [y] is the 

biggest key < key [x]
E.g.: predecessor (15) =  

predecessor (9) = 
predecessor (7) = 

Case 1: left (x) is non empty
predecessor (x ) = the maximum in left (x)

Case 2: left (x) is empty
go up the tree until the current node is a right 
child: predecessor (x ) is the parent of the current 
node
if you cannot go further (and you reached the 
root):    x is the smallest element
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13

Insertion
Goal:

Insert value v into a binary search tree

Idea:
If key [x] < v move to the right child of x,

else move to the left child of x
When x is NIL, we found the correct position 
If v < key [y] insert the new node as y’s left child

else insert it as y’s right child

Beginning at the root, go down the tree and maintain:
Pointer x : traces the downward path (current node)
Pointer y : parent of x (“trailing pointer” )
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Example: TREE-INSERT
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Alg: TREE-INSERT(T, z)
1. y ← NIL
2. x ← root [T]
3. while x ≠ NIL
4. do y ← x
5. if key [z] < key [x]
6. then x ← left [x]
7. else x ← right [x]
8. p[z] ← y
9. if y = NIL
10. then root [T] ← z Tree T was empty
11. else if key [z] < key [y]
12. then left [y] ← z
13. else right [y] ← z
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Running time: O(h)
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Deletion
Goal:

Delete a given node z from a binary search tree
Idea:

Case 1: z has no children
Delete z by making the parent of z point to NIL
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Deletion
Case 2: z has one child

Delete z by making the parent of z point to z’s 
child, instead of to z
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Deletion
Case 3: z has two children

z’s successor (y) is the minimum node in z’s right subtree
y has either no children or one right child (but no left child)
Delete y from the tree (via Case 1 or 2)
Replace z’s key and satellite data with y’s.
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TREE-DELETE(T, z)
1. if left[z] = NIL or right[z] = NIL
2. then y ← z
3. else y ← TREE-

SUCCESSOR(z)
4. if left[y] ≠ NIL
5. then x ← left[y]
6. else x ← right[y]
7. if x ≠ NIL
8. then p[x] ← p[y]

z has one child

z has 2 children
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TREE-DELETE(T, z) – cont.
9. if p[y] = NIL
10. then root[T] ← x
11. else if y = left[p[y]]
12. then left[p[y]] ← x
13. else right[p[y]] ← x
14. if y ≠ z
15. then key[z] ← key[y]
16. copy y’s satellite data into z
17. return y
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Binary Search Trees - Summary
Operations on binary search trees:

SEARCH O(h)
PREDECESSOR O(h)
SUCCESOR O(h)
MINIMUM O(h)
MAXIMUM O(h)
INSERT O(h)
DELETE O(h)

These operations are fast if the height of the 
tree is small – otherwise their performance is 
similar to that of a linear linked list
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Sorting With Binary Search 
Trees

Informal code for sorting array A of length n:
TreeSort(A)

for i=1 to n
TreeInsert(A[i]);

InorderTreeWalk(root);

Argue that this is Ω(n lg n)
What will be the running time in the 

Worst case?  
Average case? (hint: remind you of anything?)
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Sorting With BSTs

Average case analysis
It’s a form of QuickSort

for i=1 to n
TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

32



Sorting with BSTs

Same partitions are done as with 
QuickSort, but in comparisons happen in 
a different order

In previous example
Everything was compared to 3 once
Then those items < 3 were compared to 1 once
Etc.

Same comparisons as QuickSort
Example: consider inserting 5
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TreeSort performs the same comparisons as
QuickSort, but in a different order.

The expected time to build the tree is asymptotically
the same as the running time of QuickSort.
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Analysis of TreeSort
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Sorting with BSTs

Since run time is proportional to the 
number of comparisons, same time as 
QuickSort: O(n lg n)

Which do you think is better, QuickSort or 
TreeSort?  Why?
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Sorting with BSTs

Since run time is proportional to the 
number of comparisons, same time as 
quicksort: O(n lg n)
Which do you think is better, QuickSort or 
TreeSort?  Why?
A: QuickSort

Better constants
Sorts in place
Doesn’t need to build a data structure
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The depth of a node = the number of comparisons
made during TREE-INSERT. Assuming all input
permutations are equally likely, we have 
Average node depth
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But, the fact that the average node depth of a 
randomly built BST = O(lg n) does not 
necessarily mean that its expected height is also 
O(lg n) (although it is).
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Outline of the analysis:
• Review Jensen’s inequality, which says that
f(E[X]) ≤ E[f(X)] for any convex function f and
random variable X.
• Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Yn = 2Xn, where Xn is the random
variable denoting the height of the BST.
• Prove that 2E[Xn] ≤ E[2Xn ] = E[Yn] = O(n3),
and hence that E[Xn] = O(lg n).

39

Expected Tree Height – How to 
Estimate?



A function f : R → R is convex if for all
α,β ≥ 0 such that α + β = 1, we have

f(αx + βy) ≤ αf(x) + βf(y)
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Convex Functions



Lemma. Let f : R → R be a convex function,
and let {α1, α2 , …, αn} be a set of nonnegative
constants such that Σk αk = 1. Then, for any set
{x1, x2, …, xn} of real numbers, we have

Proof. By induction on n. Omitted.

41

Convexity Lemma



Lemma. Let f be a convex function, and let X
be a random variable. Then, f (E[X]) ≤ E[ f (X)].

Jensen’s inequality

42

Jensen’s Inequality



Analysis of BST Height
Let Xn be the random variable denoting
the height of a randomly built binary
search tree on n nodes, and let Yn = 2Xn

be its exponential height.
If the root of the tree has rank k, then

Xn= 1 + max{Xk–1, Xn–k} ,
since each of the left and right subtrees
of the root are randomly built. Hence,
we have

Yn= 2· max{Yk–1, Yn–k} .
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Analysis (Continued)
Define the indicator random variable Znk as

1 if the root has rank k,
0 otherwise.

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and
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Exponential Height Recurrence

Take expectation of both sides.
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Linearity of expectation.
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Exponential Height Recurrence



Independence of the rank of the root
from the ranks of subtree roots.
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Exponential Height Recurrence



The max of two nonnegative numbers
is at most their sum, and E[Znk] = 1/n.
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Exponential Height Recurrence



Each term appears
Twice – re-index.
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Exponential Height Recurrence



Solving the Recurrence
Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.
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Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions. Substitution.
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Solving the Recurrence



Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

Integral method.
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Solving the Recurrence



Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

Compute the integral.
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Solving the Recurrence



Algebra.

Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

54

Solving the Recurrence



Putting it all together, we have

2E[Xn] ≤ E[2Xn ]
from Jensen’s inequality, since

f(x) = 2x is convex.

The Grand Finale
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Putting it all together, we have

Definition.  
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The Grand Finale



Putting it all together, we have

What we just showed.
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The Grand Finale



Putting it all together, we have

Taking the lg of both sides yields
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The Grand Finale



Post Mortem

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential
height?

Q. Why not just develop the recurrence on

directly?
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Post Mortem (Continued)
A. The inequality

max{a, b} ≤ a + b .
provides a poor upper bound, since the RHS
approaches the LHS slowly as |a – b| increases.
The bound

max{2a, 2b} ≤ 2a + 2b

allows the RHS to approach the LHS more
quickly as |a – b| increases. By using the
convexity of f(x) = 2x via Jensen’s inequality,
we can manipulate the sum of exponentials,
resulting in a tight analysis.
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Example Random BST
An example of a randomly generated 500 node BST 
nodes at expected depth 9.98, height = 17.
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Not All Tree Operations 
Preserve Randomness

( )NΘ

After a quarter-million random 
insert/remove pairs, right-heavy tree 
on the previous slide, looks decidedly 
unbalanced and average depth 
becomes 12.51.

Deletion algorithm described favors making left subtrees 
deeper than right subtrees (a deleted node is replaced with a 
node from the right). The exact effect of this still unknown, but 
if insertions and deletions are alternated Ɵ(N2) times, 
expected depth is .
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BST Tree Height Summary

The height h of a binary search tree on n 
items can be as high as n-1

However, if it is built by inserting the 
elements in random order, then the 
expected height is O(lg n).
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