
CS161:
Design and Analysis of

Algorithms

Lecture 9
Leonidas Guibas

1

Outline

Review of last lecture: Hashing

Binary Search Trees
Traversals
Search/Insertion/Deletion
TreeSort
Expected depth

Slides modified from
• www.cse.unr.edu/~bebis/CS477/
• homes.ieu.edu.tr/cevrendilek/CE221_week_10_Chapter4_TreesBST.ppt
• http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j

2

Dictionary Data
Structures

http://www.cse.unr.edu/%7Ebebis/CS477/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j

Hashing

0

m–1

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

collision

3

Methods of Collision Resolution
Chaining:

Store all elements that hash to the
same slot in a linked list.
Store a pointer to the head of the
linked list in the hash table slot.

Open Addressing:
All elements stored in hash table
itself.
When collisions occur, use a
systematic (consistent) procedure
to store (and search for) elements
in free slots of the table.

k2

0

m–1

k1 k4

k5 k6

k7 k3

k8

4

Choosing A Hash Function
Choosing the hash function well is crucial

Bad hash function puts all elements in same
slot
A good hash function:

Should distribute keys uniformly into slots
Should not depend on patterns in the data

We discussed two methods:
Division method
Multiplication method

One more in worth mentioning
Universal hashing

5

Binary Search Trees

6

Binary Search Trees
Tree representation:

A linked data structure in which a
set of nodes is connected into a
tree

Node representation:
Key field
Satellite data
Left: pointer to left child
Right: pointer to right child
p: pointer to parent (p [root [T]]
= NIL)

Satisfies the binary-search-tree
property

Left child Right child

L R
parent

key data

7

Binary Search Tree Property

Binary search tree order
property:

If y is in left subtree of x,
then key [y] ≤ key [x]

If y is in right subtree of x,
then key [y] ≥ key [x]

2

3

5

5

7

9

8

Binary Search Trees
Support *many* dynamic set operations

SEARCH, MINIMUM, MAXIMUM,
PREDECESSOR, SUCCESSOR, INSERT,
DELETE

In particular, a Binary Search Tree (BST)
can implement both the Dictionary and the
Priority Queue abstract data types

9

Binary Search Trees
Running time of basic operations on binary
search trees

On average: Θ(lg n) [Really O(h), h = height of
tree]

The expected height of the tree is lg n (balanced
case)

In the worst case: Θ(n)
The tree is a linear chain of n nodes (unbalanced
case)

10

Best/Worst Case

11

balanced case

Traversing a Binary Search Tree
Inorder tree walk (traversal):

Root is visited between the visits of its left and
right subtrees: left, root, right
Keys are visited in sorted order

Preorder tree walk:
root visited first: root, left, right

Postorder tree walk:
root visited last: left, right, root

2

3

5

5

7

9

Preorder: 5 3 2 5 7 9

Inorder: 2 3 5 5 7 9

Postorder: 2 5 3 9 7 5
12

Traversing a Binary Search
Tree

Alg: INORDER-TREE-WALK(x)
1. if x ≠ NIL
2. then INORDER-TREE-WALK (left [x])
3. visit/print key [x]
4. INORDER-TREE-WALK (right [x])

E.g.:

Running time:
Θ(n), where n is the size of the tree rooted at x

2

3

5

5

7

9

Output: 2 3 5 5 7 9

13

Searching for a Key

Given a pointer to the root of a tree and a key k:
Return a pointer to a node with key k
(if one exists)
Otherwise return NIL

Idea
Starting at the root: trace down a path by comparing k with the
key of the current node:

If k = key[x], we have found the key
If k < key[x], search in the left subtree of x
If k > key[x], search in the right subtree of x

2

3

4

5

7

9

14

Example: TREE-SEARCH

Search for key 13:
15 → 6 → 7 → 13

3

2 4

6

7

13

15

18

17 20

9

15

Searching for a Key
Alg: TREE-SEARCH(x, k)

1. if x = NIL or k = key [x]
2. then return x
3. if k < key [x]
4. then return TREE-SEARCH(left [x], k)
5. else return TREE-SEARCH(right [x], k)

Running Time: O (h),
h – the height of the tree

2

3

4

5

7

9

16

Finding the Minimum
in a Binary Search Tree

Goal: find the minimum value in a
BST

Following left child pointers from the
root, until a NIL is encountered

Alg: TREE-MINIMUM(x)
1. while left [x] ≠ NIL
2. do x ← left [x]
3. return x

Running time: O(h), h = height of tree

3

2 4

6

7

13

15

18

17 20

9

Minimum = 2

17

Finding the Maximum
in a Binary Search Tree

3

2 4

6

7

13

15

18

17 20

9

Maximum = 20

Goal: find the maximum value in a
BST

Following right child pointers from the
root, until a NIL is encountered

Alg: TREE-MAXIMUM(x)
1. while right [x] ≠ NIL
2. do x ← right [x]
3. return x

Running time: O(h), h = height of tree 18

Successor
Def: successor (x) = y, such that key [y] is the

smallest key > key [x]
E.g.: successor (15) =

successor (13) =
successor (9) =

Case 1: right (x) is non empty
successor (x) = the minimum in right (x)

Case 2: right (x) is empty
go up the tree until the current node is a left child:
successor (x) is the parent of the current node
if you cannot go further (and you reached the
root): x is the largest element

3

2 4

6

7

13

15

18

17 20

9

17
15

13
x y

19

Finding the Successor

Alg: TREE-SUCCESSOR(x)
1. if right [x] ≠ NIL
2. then return TREE-MINIMUM(right [x])
3. y ← p[x]
4. while y ≠ NIL and x = right [y]
5. do x ← y
6. y ← p[y]
7. return y

Running time: O (h), h = height of the tree

3

2 4

6

7

13

15

18

17 20

9

y

x

20

Predecessor
Def: predecessor (x) = y, such that key [y] is the

biggest key < key [x]
E.g.: predecessor (15) =

predecessor (9) =
predecessor (7) =

Case 1: left (x) is non empty
predecessor (x) = the maximum in left (x)

Case 2: left (x) is empty
go up the tree until the current node is a right
child: predecessor (x) is the parent of the current
node
if you cannot go further (and you reached the
root): x is the smallest element

3

2 4

6

7

13

15

18

17 20

9

13
7
6

x
y

21

13

Insertion
Goal:

Insert value v into a binary search tree

Idea:
If key [x] < v move to the right child of x,

else move to the left child of x
When x is NIL, we found the correct position
If v < key [y] insert the new node as y’s left child

else insert it as y’s right child

Beginning at the root, go down the tree and maintain:
Pointer x : traces the downward path (current node)
Pointer y : parent of x (“trailing pointer”)

2

1 3

5

9

12

18

15 19

17

Insert value 13

22

Example: TREE-INSERT

2

1 3

5

9

12

18

15 19

17

x=root[T], y=NILInsert 13:

2

1 3

5

9

12

18

15 19

17

x

2

1 3

5

9

12

18

15 19

17

x

x = NIL
y = 15

13

2

1 3

5

9

12

18

15 19

17

y

y

23

Alg: TREE-INSERT(T, z)
1. y ← NIL
2. x ← root [T]
3. while x ≠ NIL
4. do y ← x
5. if key [z] < key [x]
6. then x ← left [x]
7. else x ← right [x]
8. p[z] ← y
9. if y = NIL
10. then root [T] ← z Tree T was empty
11. else if key [z] < key [y]
12. then left [y] ← z
13. else right [y] ← z

2

1 3

5

9

12

18

15 19

1713

Running time: O(h)
24

Deletion
Goal:

Delete a given node z from a binary search tree
Idea:

Case 1: z has no children
Delete z by making the parent of z point to NIL

15

16

20

18 23

6

5

123

7

10 13

delete

15

16

20

18 23

6

5

123

7

10
z

25

Deletion
Case 2: z has one child

Delete z by making the parent of z point to z’s
child, instead of to z

15

16

20

18 23

6

5

123

7

10 13

delete 15

20

18 23

6

5

123

7

10

z

26

Deletion
Case 3: z has two children

z’s successor (y) is the minimum node in z’s right subtree
y has either no children or one right child (but no left child)
Delete y from the tree (via Case 1 or 2)
Replace z’s key and satellite data with y’s.

15

16

20

18 23

6

5

123

7

10 13

delete z

y

15

16

20

18 23

7

6

123

10 13

6

27

TREE-DELETE(T, z)
1. if left[z] = NIL or right[z] = NIL
2. then y ← z
3. else y ← TREE-

SUCCESSOR(z)
4. if left[y] ≠ NIL
5. then x ← left[y]
6. else x ← right[y]
7. if x ≠ NIL
8. then p[x] ← p[y]

z has one child

z has 2 children

15

16

20

18 23

6

5

123

7

10 13

y

x

28

TREE-DELETE(T, z) – cont.
9. if p[y] = NIL
10. then root[T] ← x
11. else if y = left[p[y]]
12. then left[p[y]] ← x
13. else right[p[y]] ← x
14. if y ≠ z
15. then key[z] ← key[y]
16. copy y’s satellite data into z
17. return y

15

16

20

18 23

6

5

123

7

10 13

y

x

Running time: O(h)
29

Binary Search Trees - Summary
Operations on binary search trees:

SEARCH O(h)
PREDECESSOR O(h)
SUCCESOR O(h)
MINIMUM O(h)
MAXIMUM O(h)
INSERT O(h)
DELETE O(h)

These operations are fast if the height of the
tree is small – otherwise their performance is
similar to that of a linear linked list

30

Sorting With Binary Search
Trees

Informal code for sorting array A of length n:
TreeSort(A)

for i=1 to n
TreeInsert(A[i]);

InorderTreeWalk(root);

Argue that this is Ω(n lg n)
What will be the running time in the

Worst case?
Average case? (hint: remind you of anything?)

31

Sorting With BSTs

Average case analysis
It’s a form of QuickSort

for i=1 to n
TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

32

Sorting with BSTs

Same partitions are done as with
QuickSort, but in comparisons happen in
a different order

In previous example
Everything was compared to 3 once
Then those items < 3 were compared to 1 once
Etc.

Same comparisons as QuickSort
Example: consider inserting 5

33

TreeSort performs the same comparisons as
QuickSort, but in a different order.

The expected time to build the tree is asymptotically
the same as the running time of QuickSort.

34

Analysis of TreeSort

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

Sorting with BSTs

Since run time is proportional to the
number of comparisons, same time as
QuickSort: O(n lg n)

Which do you think is better, QuickSort or
TreeSort? Why?

35

Sorting with BSTs

Since run time is proportional to the
number of comparisons, same time as
quicksort: O(n lg n)
Which do you think is better, QuickSort or
TreeSort? Why?
A: QuickSort

Better constants
Sorts in place
Doesn’t need to build a data structure

36

The depth of a node = the number of comparisons
made during TREE-INSERT. Assuming all input
permutations are equally likely, we have
Average node depth

37

Node Depth

But, the fact that the average node depth of a
randomly built BST = O(lg n) does not
necessarily mean that its expected height is also
O(lg n) (although it is).

38

Expected Tree Height

Outline of the analysis:
• Review Jensen’s inequality, which says that
f(E[X]) ≤ E[f(X)] for any convex function f and
random variable X.
• Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Yn = 2Xn, where Xn is the random
variable denoting the height of the BST.
• Prove that 2E[Xn] ≤ E[2Xn] = E[Yn] = O(n3),
and hence that E[Xn] = O(lg n).

39

Expected Tree Height – How to
Estimate?

A function f : R → R is convex if for all
α,β ≥ 0 such that α + β = 1, we have

f(αx + βy) ≤ αf(x) + βf(y)

40

Convex Functions

Lemma. Let f : R → R be a convex function,
and let {α1, α2 , …, αn} be a set of nonnegative
constants such that Σk αk = 1. Then, for any set
{x1, x2, …, xn} of real numbers, we have

Proof. By induction on n. Omitted.

41

Convexity Lemma

Lemma. Let f be a convex function, and let X
be a random variable. Then, f (E[X]) ≤ E[f (X)].

Jensen’s inequality

42

Jensen’s Inequality

Analysis of BST Height
Let Xn be the random variable denoting
the height of a randomly built binary
search tree on n nodes, and let Yn = 2Xn

be its exponential height.
If the root of the tree has rank k, then

Xn= 1 + max{Xk–1, Xn–k} ,
since each of the left and right subtrees
of the root are randomly built. Hence,
we have

Yn= 2· max{Yk–1, Yn–k} .
43

Analysis (Continued)
Define the indicator random variable Znk as

1 if the root has rank k,
0 otherwise.

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and

44

Exponential Height Recurrence

Take expectation of both sides.

45

Linearity of expectation.

46

Exponential Height Recurrence

Independence of the rank of the root
from the ranks of subtree roots.

47

Exponential Height Recurrence

The max of two nonnegative numbers
is at most their sum, and E[Znk] = 1/n.

48

Exponential Height Recurrence

Each term appears
Twice – re-index.

49

Exponential Height Recurrence

Solving the Recurrence
Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

50

Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions. Substitution.

51

Solving the Recurrence

Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

Integral method.

52

Solving the Recurrence

Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

Compute the integral.

53

Solving the Recurrence

Algebra.

Use substitution to
show that E[Yn] ≤ cn3

for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

54

Solving the Recurrence

Putting it all together, we have

2E[Xn] ≤ E[2Xn]
from Jensen’s inequality, since

f(x) = 2x is convex.

The Grand Finale

55

Putting it all together, we have

Definition.

56

The Grand Finale

Putting it all together, we have

What we just showed.

57

The Grand Finale

Putting it all together, we have

Taking the lg of both sides yields

58

The Grand Finale

Post Mortem

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential
height?

Q. Why not just develop the recurrence on

directly?

59

Post Mortem (Continued)
A. The inequality

max{a, b} ≤ a + b .
provides a poor upper bound, since the RHS
approaches the LHS slowly as |a – b| increases.
The bound

max{2a, 2b} ≤ 2a + 2b

allows the RHS to approach the LHS more
quickly as |a – b| increases. By using the
convexity of f(x) = 2x via Jensen’s inequality,
we can manipulate the sum of exponentials,
resulting in a tight analysis.

60

Example Random BST
An example of a randomly generated 500 node BST
nodes at expected depth 9.98, height = 17.

61

Not All Tree Operations
Preserve Randomness

()NΘ

After a quarter-million random
insert/remove pairs, right-heavy tree
on the previous slide, looks decidedly
unbalanced and average depth
becomes 12.51.

Deletion algorithm described favors making left subtrees
deeper than right subtrees (a deleted node is replaced with a
node from the right). The exact effect of this still unknown, but
if insertions and deletions are alternated Ɵ(N2) times,
expected depth is .

62

()NΘ

BST Tree Height Summary

The height h of a binary search tree on n
items can be as high as n-1

However, if it is built by inserting the
elements in random order, then the
expected height is O(lg n).

63

	CS161:�Design and Analysis of Algorithms�����Lecture 9�Leonidas Guibas
	Outline
	Hashing
	Methods of Collision Resolution
	Choosing A Hash Function
	Binary Search Trees
	Binary Search Trees
	Binary Search Tree Property
	Binary Search Trees
	Binary Search Trees
	Best/Worst Case
	Traversing a Binary Search Tree
	Traversing a Binary Search Tree
	Searching for a Key
	Example: TREE-SEARCH
	Searching for a Key
	Finding the Minimum �in a Binary Search Tree
	Finding the Maximum �in a Binary Search Tree
	Successor
	Finding the Successor
	Predecessor
	Insertion
	Example: TREE-INSERT
	Alg: TREE-INSERT(T, z)
	Deletion
	Deletion
	Deletion
	TREE-DELETE(T, z)
	TREE-DELETE(T, z) – cont.
	Binary Search Trees - Summary
	Sorting With Binary Search Trees
	Sorting With BSTs
	Sorting with BSTs
	Slide Number 34
	Sorting with BSTs
	Sorting with BSTs
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Example Random BST
	Not All Tree Operations Preserve Randomness
	BST Tree Height Summary

