CS161: Design and Analysis of Algorithms

Lecture 9 Leonidas Guibas

Outline

Review of last lecture: Hashing

Binary Search Trees

Traversals

Search/Insertion/Deletion

TreeSort

Expected depth

Slides modified from

- <u>www.cse.unr.edu/~bebis/CS477/</u>
- homes.ieu.edu.tr/cevrendilek/CE221_week_10_Chapter4_TreesBST.ppt
- <u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046</u>

Dictionary Data Structures

Methods of Collision Resolution

Chaining:

 Store all elements that hash to the same slot in a linked list.

 Store a pointer to the head of the linked list in the hash table slot.

Open Addressing:

- All elements stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure to store (and search for) elements in free slots of the table.

Choosing A Hash Function

Choosing the hash function well is crucial

- Bad hash function puts all elements in same slot
- A good hash function:
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data
- We discussed two methods:
 - Division method
 - Multiplication method
- One more in worth mentioning
 - Universal hashing

Binary Search Trees

Binary Search Trees

Tree representation:

- A linked data structure in which a set of nodes is connected into a tree
- Node representation:
 - Key field
 - Satellite data
 - Left: pointer to left child
 - Right: pointer to right child
 - p: pointer to parent (p [root [T]] = NIL)

Satisfies the binary-search-tree property

Binary Search Tree Property

Binary search tree order property:

If y is in left subtree of x,
 then key [y] ≤ key [x]

If y is in right subtree of x,
 then key [y] ≥ key [x]

Binary Search Trees

Support *many* dynamic set operations

SEARCH, MINIMUM, MAXIMUM,
 PREDECESSOR, SUCCESSOR, INSERT,
 DELETE

 In particular, a Binary Search Tree (BST) can implement both the Dictionary and the Priority Queue abstract data types

Binary Search Trees

- Running time of basic operations on binary search trees
 - On average: O(lg n) [Really O(h), h = height of tree]
 - The expected height of the tree is lg n (balanced case)
 - In the worst case: $\Theta(n)$
 - The tree is a linear chain of n nodes (unbalanced case)

Best/Worst Case

balanced case

- If the tree is very **unbalanced**, then running time will be O(n).

Traversing a Binary Search Tree

• **Inorder** tree walk (traversal):

- Root is visited between the visits of its left and right subtrees: left, root, right
- Keys are visited in sorted order
- Preorder tree walk:
 - root visited first: root, left, right

Postorder tree walk:

root visited last: left, right, root

Inorder: 235579

Preorder: 5 3 2 5 7 9

Postorder: 2 5 3 9 7 5

Traversing a Binary Search Tree

- *Alg:* INORDER-TREE-WALK(x)
- 1. if $x \neq NIL$
- 2. **then** INORDER-TREE-WALK (left [x])
- 3. visit/print key [x]
- 4. INORDER-TREE-WALK (right [x])

Output: 235579

- Running time:
 - $\Theta(n)$, where n is the size of the tree rooted at x_{13}

Searching for a Key

Given a pointer to the root of a tree and a key k:

- Return a pointer to a node with key k (if one exists)
- Otherwise return NIL
- Idea
 - Starting at the root: trace down a path by comparing k with the key of the current node:
 - If k = key[x], we have found the key
 - If k < key[x], search in the left subtree of x</p>
 - If k > key[x], search in the right subtree of x

Example: TREE-SEARCH

Search for key 13:
 15 → 6 → 7 → 13

Searching for a Key Alg: TREE-SEARCH(x, k)

- 1. if x = NIL or k = key[x]
- 2. then return x
- 3. if k < key [x]

3

2

Running Time: O (h), h – the height of the tree 9)

Finding the Minimum in a Binary Search Tree

- Goal: find the minimum value in a BST
 - Following left child pointers from the root, until a NIL is encountered
- Alg: TREE-MINIMUM(x)
- 1. while left $[x] \neq NIL$
- 2. do $x \leftarrow \text{left}[x]$

Minimum = 2

9

3

(4)

2

(15)

(17)

18)

20

3. return x

Running time: O(h), h = height of tree

Finding the Maximum in a Binary Search Tree

- Goal: find the maximum value in a BST
 - Following right child pointers from the root, until a NIL is encountered
- Alg: TREE-MAXIMUM(x)
- 1. while right $[x] \neq NIL$
- 2. do $x \leftarrow right [x]$

Maximum = 20

9

(17)

6

4 ک

3

(2)

3. return x

Running time: O(h), h = height of tree

18)

20

Successor

- Def: successor (x) = y, such that key [y] is the
 smallest key > key [x]
 - E.g.: successor (15) = 17successor (13) = 15successor (9) = 13
- Case 1: right (x) is non empty 2• successor (x) = the minimum in right (x)
- Case 2: right (x) is empty
 - go up the tree until the current node is a left child: successor (χ) is the parent of the current node
 - if you cannot go further (and you reached the root): x is the largest element

15

17

9

6

(4)

3

18)

20'

Finding the Successor

Alg: TREE-SUCCESSOR(x)

- 1. if right $[x] \neq NIL$
- 2. **then return** TREE-MINIMUM(right [x])
- 3. $y \leftarrow p[x]$
- 4. while $y \neq NIL$ and x = right [y]
- 5. **do** $x \leftarrow y$
- 6. y ← p[y]
- 7. return y

Running time: O (h), h = height of the tree

15

9

18

13 × 20

6

(4)

3

2

Predecessor

Def: predecessor $(\chi) = y$, such that key [y] is the biggest key < key [x] • E.g.: predecessor (15) = 1315 predecessor(9) = 718) 6 predecessor (7) = 620 3 17 Case 1: left (x) is non empty (2) (4) • predecessor (χ) = the maximum in left (x) (9) Case 2: left (x) is empty • go up the tree until the current node is a right

- child: *predecessor* (χ) is the parent of the current node
- if you cannot go further (and you reached the root): x is the smallest element

Insertion

Goal:

Insert value v into a binary search tree

Idea:

If key [x] < v move to the right child of x,</p>

else move to the left child of x

- When x is NIL, we found the correct position
- If v < key [y] insert the new node as y's left child
 else insert it as y's right child

Beginning at the root, go down the tree and maintain:

- Pointer x : traces the downward path (current node)
- Pointer y : parent of x ("trailing pointer")

Insert value 13

18)

(17)

(19)

5

3

9)

15

Example: TREE-INSERT

Alg: TREE-INSERT(T, z)

1. $y \leftarrow NIL$ 2. $x \leftarrow root[T]$ while x ≠ NIL 3. do y \leftarrow x 4. 5 18) 5. if key [z] < key [x] 19) (15) 9) then $x \leftarrow \text{left}[x]$ 6. (3) (17)(1) 13 else $x \leftarrow right [x]$ 7. 8. p[z] ← y if y = NIL 9. then root $[T] \leftarrow z$ 10. ▷ Tree T was empty else if key [z] < key [y] 11. then left $[y] \leftarrow z$ 12. else right $[y] \leftarrow z$ 13. Running time: O(h)

Deletion

Goal:

Delete a given node z from a binary search tree

Idea:

• Case 1: z has no children

Delete z by making the parent of z point to NIL

Deletion

Case 2: z has one child

 Delete z by making the parent of z point to z's child, instead of to z

Deletion

Case 3: z has two children

- z's successor (y) is the minimum node in z's right subtree
- y has either no children or one right child (but no left child)
- Delete y from the tree (via Case 1 or 2)
- Replace z's key and satellite data with y's.

TREE-DELETE(T, z)

- 1. if left[z] = NIL or right[z] = NIL
- 2. then $y \leftarrow z$
- 3. else $y \leftarrow TREE$ -SUCCESSOR(z)
- 4. if left[y] \neq NIL
- 5. then $x \leftarrow \text{left}[y]$
- 6. else $x \leftarrow right[y]$
- 7. if $x \neq NIL$
- 8. then $p[x] \leftarrow p[y]$

z has one child

z has 2 children

TREE-DELETE(T, z) – cont.

- 9. if p[y] = NIL10. then $root[T] \leftarrow x$ 11. else if y = left[p[y]]12. then $left[p[y]] \leftarrow x$ 13. else right[p[y]] \leftarrow x 15. $\frac{15}{10}$ 10. $\frac{15}{10$
- 14. **if y** ≠ **z**
- 15. then $key[z] \leftarrow key[y]$
- 16. copy y's satellite data into z
- 17. return y

Running time: O(h)

Binary Search Trees - Summary

Operations on binary search trees:

SEARCH	<i>O</i> (h)
PREDECESSOR	0(h)
SUCCESOR	0(h)
MINIMUM	0(h)
MAXIMUM	0(h)
INSERT	0(h)
DELETE	0(h)

 These operations are fast if the height of the tree is small – otherwise their performance is similar to that of a linear linked list

Sorting With Binary Search Trees

- Informal code for sorting array A of length n:
 TreeSort(A)
 for i=1 to n
 TreeInsert(A[i]);
 InorderTreeWalk(root);
- Argue that this is Ω(n lg n)
 What will be the running time in the
 Worst case?
 Average case? (hint: remind you of anything?)

Sorting With BSTs

Average case analysis
 It's a form of QuickSort

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);

Sorting with BSTs

- Same partitions are done as with QuickSort, but in comparisons happen in a different order
 - In previous example
 - Everything was compared to 3 once
 - Then those items < 3 were compared to 1 once
 Etc.
 - Same comparisons as QuickSort
 Example: consider inserting 5

Analysis of TreeSort

TreeSort performs the same comparisons as QuickSort, but in a different order.

The expected time to build the tree is asymptotically the same as the running time of QuickSort.

Sorting with BSTs

 Since run time is proportional to the number of comparisons, same time as QuickSort: O(n Ig n)

Which do you think is better, QuickSort or TreeSort? Why?

Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- Which do you think is better, QuickSort or TreeSort? Why?
- A: QuickSort
 - Better constants
 - Sorts in place
 - Doesn't need to build a data structure

Node Depth

The depth of a node = the number of comparisons made during TREE-INSERT. Assuming all input permutations are equally likely, we have

Average node depth

 $= \frac{1}{n} E \left[\sum_{i=1}^{n} (\# \text{ comparisons to insert node } i) \right]$ $= \frac{1}{n} O(n \lg n) \qquad (\text{quicksort analysis})$ $= O(\lg n) .$

Expected Tree Height

But, the fact that the average node depth of a randomly built $BST = O(\lg n)$ does not necessarily mean that its expected height is also $O(\lg n)$ (although it is).

Expected Tree Height – How to Estimate?

Outline of the analysis:

• Review *Jensen's inequality*, which says that $f(E[X]) \le E[f(X)]$ for any convex function *f* and random variable *X*.

• Analyze the *exponential height* of a randomly built BST on *n* nodes, which is the random variable $Y_n = 2^{Xn}$, where X_n is the random variable denoting the height of the BST.

• Prove that $2^{E[Xn]} \le E[2^{Xn}] = E[Y_n] = O(n^3)$, and hence that $E[X_n] = O(\lg n)$.

Convex Functions

A function $f : \mathbb{R} \to \mathbb{R}$ is *convex* if for all $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$, we have

 $f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$

Convexity Lemma

Lemma. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function, and let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a set of nonnegative constants such that $\Sigma_k \alpha_k = 1$. Then, for any set $\{x_1, x_2, ..., x_n\}$ of real numbers, we have

$$f\left(\sum_{k=1}^n \alpha_k x_k\right) \leq \sum_{k=1}^n \alpha_k f(x_k).$$

Proof. By induction on *n*. Omitted.

Jensen's Inequality

Lemma. Let *f* be a convex function, and let *X* be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof. $f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$ $\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}$ = E[f(X)].

Analysis of BST Height

Let X_n be the random variable denoting the height of a randomly built binary search tree on *n* nodes, and let $Y_n = 2^{X_n}$ be its exponential height.

If the root of the tree has rank k, then

 $X_n = 1 + \max\{X_{k-1}, X_{n-k}\}$,

since each of the left and right subtrees of the root are randomly built. Hence, we have

$$Y_n=2\cdot \max\{Y_{k-1}, Y_{n-k}\}.$$

Analysis (Continued)

Define the indicator random variable Z_{nk} as

 $Z_{nk} = \begin{cases} 1 \text{ if the root has rank } k, \\ 0 \text{ otherwise.} \end{cases}$

Thus, $Pr{Z_{nk} = 1} = E[Z_{nk}] = 1/n$, and

$$Y_n = \sum_{k=1}^n Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\} \right)$$

$$E[Y_n] = E\left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

Take expectation of both sides.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$
$$= \sum_{k=1}^n E[Z_{nk}(2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$

Linearity of expectation.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$
$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$
$$= 2\sum_{k=1}^n E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$$

Independence of the rank of the root from the ranks of subtree roots.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$
$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$
$$= 2\sum_{k=1}^n E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$$
$$\leq \frac{2}{n} \sum_{k=1}^n E[Y_{k-1} + Y_{n-k}]$$

The max of two nonnegative numbers is at most their sum, and $E[Z_{nk}] = 1/n$.

$$E[Y_n] = E\left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

= $\sum_{k=1}^{n} E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$
= $2\sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$
 $\leq \frac{2}{n} \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}]$
= $\frac{n-1}{2}$ Each term appendix

$$=\frac{4}{n}\sum_{k=0}^{n-1}E[Y_k]$$

Each term appears Twice – re-index.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

Substitution.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

$$\leq \frac{4c}{n} \int_0^n x^3 dx$$

Integral method.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

Compute the integral.

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant *c*, which we can pick sufficiently large to handle the initial conditions.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$
$$\leq \frac{4}{n} \sum_{k=0}^{n-1} ck^3$$
$$\leq \frac{4c}{n} \int_0^n x^3 dx$$
$$= \frac{4c}{n} \left(\frac{n^4}{4}\right)$$
$$= cn^3.$$
 Algebra

Putting it all together, we have

 $2^{E[Xn]} \leq E[2^{Xn}]$

from Jensen's inequality, since $f(x) = 2^x$ is convex.

Putting it all together, we have

 $2^{E[X_n]} \le E[2^{X_n}]$ $= E[Y_n]$

Definition.

Putting it all together, we have

 $2^{E[X_n]} \le E[2^{X_n}]$ $= E[Y_n]$ $\le cn^3.$

What we just showed.

Putting it all together, we have

 $2^{E[X_n]} \le E[2^{X_n}]$ $= E[Y_n]$ $\le cn^3.$

Taking the lg of both sides yields

 $E[X_n] \le 3 \lg n + O(1).$

Post Mortem

- **Q.** Does the analysis have to be this hard?
- **Q.** Why bother with analyzing exponential height?
- **Q.** Why not just develop the recurrence on

$$X_n = 1 + \max\{X_{k-1}, X_{n-k}\}$$

directly?

Post Mortem (Continued)

A. The inequality

 $\max\{a,b\}\leq a+b.$

provides a poor upper bound, since the RHS approaches the LHS slowly as |a - b| increases. The bound

 $\max\{2^a, 2^b\} \le 2^a + 2^b$

allows the RHS to approach the LHS more quickly as |a - b| increases. By using the convexity of $f(x) = 2^x$ via Jensen's inequality, we can manipulate the sum of exponentials, resulting in a tight analysis.

Example Random BST

- An example of a randomly generated 500 node BST
- nodes at expected depth 9.98, height = 17.

Not All Tree Operations Preserve Randomness

• Deletion algorithm described favors making left subtrees deeper than right subtrees (a deleted node is replaced with a node from the right). The exact effect of this still unknown, but if insertions and deletions are alternated $\Theta(N^2)$ times, expected depth is $\Theta(\sqrt{N})$.

After a quarter-million random insert/remove pairs, right-heavy tree on the previous slide, looks decidedly unbalanced and average depth becomes 12.51.

BST Tree Height Summary

 The height h of a binary search tree on n items can be as high as n-1

 However, if it is built by inserting the elements in random order, then the expected height is O(lg n).