CS161:
 Design and Analysis of Algorithms

Outline

*Review of last lecture: Hashing

- Binary Search Trees
- Traversals

Dictionary Data
Structures
*Search/Insertion/Deletion

- TreeSort
- Expected depth
- homes.ieu.edu.tr/cevrendilek/CE221 week 10 Chapter4 TreesBST.ppt
- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046i 2

Hashing

Methods of Collision Resolution

- Chaining:
-Store all elements that hash to the same slot in a linked list.
- Store a pointer to the head of the linked list in the hash table slot.

- Open Addressing:
*All elements stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure
 to store (and search for) elements in free slots of the table.

Choosing A Hash Function

- Choosing the hash function well is crucial
-Bad hash function puts all elements in same slot
- A good hash function:
* Should distribute keys uniformly into slots
* Should not depend on patterns in the data
- We discussed two methods:
- Division method
- Multiplication method

One more in worth mentioning
-Universal hashing

Binary Search Trees

Binary Search Trees

- Tree representation:
- A linked data structure in which a set of nodes is connected into a tree
- Node representation:
- Key field
- Satellite data
- Left: pointer to left child
- Right: pointer to right child
- p: pointer to parent (p [root [T]] $=$ NIL)
- Satisfies the binary-search-tree property

Binary Search Tree Property

Binary search tree order property:

- If y is in left subtree of x, then key $[y] \leq$ key $[x]$

- If y is in right subtree of x, then key $[y] \geq$ key $[x]$

Binary Search Trees

- Support *many* dynamic set operations
- SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, DELETE
- In particular, a Binary Search Tree (BST)
can implement both the Dictionary and the Priority Queue abstract data types

Binary Search Trees

-Running time of basic operations on binary search trees
*On average: $\Theta(\lg n)$ [Really $O(h), h=$ height of tree]
*The expected height of the tree is $\lg n$ (balanced case)

- In the worst case: $\Theta(n)$
- The tree is a linear chain of n nodes (unbalanced case)

Best/Worst Case

balanced case

- If the tree is very unbalanced, then running time will be $O(n)$.

Traversing a Binary Search Tree

- Inorder tree walk (traversal):
- Root is visited between the visits of its left and right subtrees: left, root, right
- Keys are visited in sorted order
* Preorder tree walk:
- root visited first: root, left, right

Postorder tree walk:

- root visited last: left, right, root

Inorder: 235579
Preorder: 532579
Postorder: 253975

Traversing a Binary Search

 TreeAlg: INORDER-TREE-WALK (x)

1. if $x \neq$ NIL
2. then INORDER-TREE-WALK (left $[x]$)
3. visit/print key [x]
4. INORDER-TREE-WALK (right $[x]$)

- E.g.:

- Running time:
- $\Theta(n)$, where n is the size of the tree rooted at x_{13}

Searching for a Key

Given a pointer to the root of a tree and a key k :

- Return a pointer to a node with key k (if one exists)
- Otherwise return NIL

- Idea
- Starting at the root: trace down a path by comparing k with the key of the current node:
- If $k=\operatorname{key}[x]$, we have found the key
- If $k<k e y[x]$, search in the left subtree of x
- If $k>\operatorname{key}[x]$, search in the right subtree of x

Example: TREE-SEARCH

- Search for key 13:
- $15 \rightarrow 6 \rightarrow 7 \rightarrow 13$

Searching for a Key

Alg: TREE-SEARCH (x, k)

1. if $x=$ NIL or $k=$ key $[x]$
2. then return x

3. if k < key [x]

4
then return TREE-SEARCH(left [x], k)
5. else return TR
Running Time: $O(h)$,
h - the height of the tree

Finding the Minimum in a Binary Search Tree

Goal: find the minimum value in a BST

- Following left child pointers from the root, until a NIL is encountered Alg: TREE-MINIMUM (x)

1. while left $[x] \neq$ NIL
2. do $x \leftarrow$ left $[x]$

Minimum $=2$
3. return x

Running time: $O(\mathrm{~h}), \mathrm{h}=$ height of tree

Finding the Maximum in a Binary Search Tree

- Goal: find the maximum value in a EST
- Following right child pointers from the root, until a NIL is encountered
Alg: TREE-MAXIMUM (x)

1. while right $[x] \neq$ NIL
2. do $x \leftarrow \operatorname{right}[x]$

Maximum $=20$

Running time: $O(\mathrm{~h}), \mathrm{h}=$ height of tree

Successor

Def: $\operatorname{successor}(x)=y$, such that key $[y]$ is the smallest key > key [x]

- E.g.: $\operatorname{successor}(15)=17$

$$
\begin{aligned}
& \text { successor }(13)=15 \\
& \text { successor }(9)=13
\end{aligned}
$$

- Case 1: right (x) is non empty (2)

- successor $(x)=$ the minimum in right (x)

Case 2: right (x) is empty

- go up the tree until the current node is a left child: $\operatorname{successor}(x)$ is the parent of the current node
- if you cannot go further (and you reached the root): x is the largest element

Finding the Successor

Alg: TREE-SUCCESSOR(x)

1. if right $[x] \neq$ NIL
2. then return TREE-MINIMUM(right $[x]$)
3. $y \leftarrow p[x]$
4. while $y \neq$ NIL and $x=\operatorname{right}[y]$
5. \quad do $x \leftarrow y$

6. $\quad y \leftarrow p[y]$
7. return y

Running time: $O(h), h=$ height of the tree

Predecessor

Def: predecessor $(x)=y$, such that key $[y]$ is the biggest key < key [x]

- E.g.: $\operatorname{predecessor~(15)=13~}$

$$
\begin{aligned}
& \operatorname{predecessor}(9)=7 \\
& \operatorname{predecessor}(7)=6
\end{aligned}
$$

- Case 1: left (x) is non empty

- $\operatorname{predecessor}(x)=$ the maximum in left (x)
- go up the tree until the current node is a right child: predecessor (x) is the parent of the current node
- if you cannot go further (and you reached the root): x is the smallest element

Insertion

- Goal:
- Insert value v into a binary search tree
- Idea:
- If key $[x]$ < v move to the right child of x,
else move to the left child of x
- When x is NIL, we found the correct position
- If v < key [y] insert the new node as y's left child else insert it as y's right child

- Beginning at the root, go down the tree and maintain:
- Pointer x : traces the downward path (current node)
- Pointer y : parent of x ("trailing pointer")

Example: TREE-INSERT

\mathcal{A} lg: $\operatorname{TREE}-\operatorname{INSERT}(\mathrm{T}, \mathrm{z})$

1. $y \leftarrow N I L$
2. $x \leftarrow \operatorname{root}[T]$
3. while $x \neq$ NIL
4. do $y \leftarrow x$
5. if key [z] < key [x]
6. then $x \leftarrow$ left $[x]$
7. else $x \leftarrow \operatorname{right}[x]$
8. $\mathrm{p}[\mathrm{z}] \leftarrow \mathrm{y}$
9. if $y=N I L$
10. then $\operatorname{root}[T] \leftarrow z$
11. else if key [z < key [y]

12 then left $[y] \leftarrow z$
13. \quad else right $[y] \leftarrow z$

\triangleright Tree T was empty

Running time: $O(h)$

Deletion

- Goal:
- Delete a given node z from a binary search tree
- Idea:
* Case 1: z has no children
- Delete z by making the parent of z point to NIL

Deletion

- Case 2: z has one child
-Delete z by making the parent of z point to z 's child, instead of to z

Deletion

- Case 3: z has two children
- z's successor (y) is the minimum node in z's right subtree
* y has either no children or one right child (but no left child)
- Delete y from the tree (via Case 1 or 2)
- Replace z's key and satellite data with y's.

TREE-DELETE(T, z)

1. if left[z] = NIL or right[z] = NIL
2. then $y \leftarrow z$
3. else $y \leftarrow$ TREESUCCESSOR(z)
4. if left $[y] \neq$ NIL
5. then $x \leftarrow$ left[y]
6. else $x \leftarrow \operatorname{right}[y]$
7. if $x \neq$ NIL
8. \quad then $p[x] \leftarrow p[y]$

TREE-DELETE(T, z) - cont.

9. if $\mathrm{p}[\mathrm{y}]=\mathrm{NLL}$

10. $\operatorname{then} \operatorname{root}[T] \leftarrow x$
11. else if $y=\operatorname{left}[p[y]]$
then left $[p[y]] \leftarrow x$

12.
13. else $\operatorname{right}[p[y]] \leftarrow x$
14. if $y \neq z$
15. then $\operatorname{key}[z] \leftarrow \operatorname{key[y]}$
16. copy y 's satellite data into z

Running time: $O(h)$

Binary Search Trees - Summary

 Operations on binary search trees:```
* SEARCH
*PREDECESSOR
-SUCCESOR
-MINIMUM
*MAXIMUM
* INSERT
*DELETE
```

$O(h)$
$O(h)$
$O(h)$
$O(h)$
$O(h)$
$O(h)$
$O(h)$

- These operations are fast if the height of the tree is small - otherwise their performance is similar to that of a linear linked list


## Sorting With Binary Search

 Trees- Informal code for sorting array A of length $n$ : TreeSort(A)

for $i=1$ to $n$<br>TreeInsert(A[i]);<br>InorderTreeWalk(root);

- Argue that this is $\Omega(n \lg n)$
- What will be the running time in the
-Worst case?
-Average case? (hint: remind you of anything?)


## Sorting With BSTs

## - Average case analysis

```
for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);
```

- It's a form of QuickSort



## Sorting with BSTs

- Same partitions are done as with

QuickSort, but in comparisons happen in a different order

- In previous example
*Everything was compared to 3 once
-Then those items < 3 were compared to 1 once
*Etc.
-Same comparisons as QuickSort
*Example: consider inserting 5


## Analysis of TreeSort

TreeSort performs the same comparisons as
QuickSort, but in a different order.


The expected time to build the tree is asymptotically the same as the running time of QuickSort.

## Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as QuickSort: O(n Ig n)
- Which do you think is better, QuickSort or TreeSort? Why?


## Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Which do you think is better, QuickSort or TreeSort? Why?
- A: QuickSort
- Better constants
- Sorts in place
- Doesn't need to build a data structure


## Node Depth

The depth of a node = the number of comparisons made during TREE-INSERT. Assuming all input permutations are equally likely, we have
Average node depth

$$
\begin{aligned}
& =\frac{1}{n} E\left[\sum_{i=1}^{n}(\# \text { comparisons to insert node } i)\right] \\
& =\frac{1}{n} O(n \lg n) \quad \text { (quicksort analysis) } \\
& =O(\lg n)
\end{aligned}
$$

## Expected Tree Height

But, the fact that the average node depth of a randomly built BST $=O(\lg n)$ does not necessarily mean that its expected height is also $O(\lg n)$ (although it is).

Example.


## Expected Tree Height - How to Estimate?

## Outline of the analysis:

- Review Jensen's inequality, which says that $f(E[X]) \leq E[f(X)]$ for any convex function $f$ and random variable $X$.
- Analyze the exponential height of a randomly built BST on $n$ nodes, which is the random variable $Y_{n}=2^{X n}$, where $X_{n}$ is the random variable denoting the height of the BST.
- Prove that $2^{E[X n]} \leq E\left[2^{X n}\right]=E\left[Y_{n}\right]=O\left(n^{3}\right)$, and hence that $E\left[X_{n}\right]=O(\lg n)$.


## Convex Functions

A function $f: \mathrm{R} \rightarrow \mathrm{R}$ is convex if for all $\alpha, \beta \geq 0$ such that $\alpha+\beta=1$, we have

$$
f(\alpha x+\beta y) \leq \alpha f(x)+\beta f(y)
$$

for all $x, y \in \mathbb{R}$.


## Convexity Lemma

Lemma. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a convex function, and let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a set of nonnegative constants such that $\Sigma_{k} \alpha_{k}=1$. Then, for any set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of real numbers, we have

$$
f\left(\sum_{k=1}^{n} \alpha_{k} x_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k} f\left(x_{k}\right)
$$

Proof. By induction on $n$. Omitted.

## Jensen’s Inequality

Lemma. Let $f$ be a convex function, and let $X$ be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

$$
\begin{aligned}
& \text { Proof. } \\
& \qquad \begin{aligned}
f(E[X]) & =f\left(\sum_{k=-\infty}^{\infty} k \cdot \operatorname{Pr}\{X=k\}\right) \\
& \leq \sum_{k=-\infty}^{\infty} f(k) \cdot \operatorname{Pr}\{X=k\} \\
& =E[f(X)] .
\end{aligned}
\end{aligned}
$$

## Analysis of BST Height

Let $X_{n}$ be the random variable denoting the height of a randomly built binary search tree on $n$ nodes, and let $Y_{n}=2^{X_{n}}$ be its exponential height.
If the root of the tree has rank $k$, then

$$
X_{n}=1+\max \left\{X_{k-1}, X_{n-k}\right\},
$$

since each of the left and right subtrees of the root are randomly built. Hence,
we have

$$
Y_{n}=2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\} .
$$

## Analysis (Continued)

Define the indicator random variable $Z_{n k}$ as
$Z_{n k}=\left\{\begin{array}{l}1 \text { if the root has rank } k, \\ 0 \text { otherwise } .\end{array}\right.$

Thus, $\operatorname{Pr}\left\{Z_{n k}=1\right\}=E\left[Z_{n k}\right]=1 / n$, and

$$
Y_{n}=\sum_{k=1}^{n} Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right) .
$$

## Exponential Height Recurrence

$$
E\left[Y_{n}\right]=E\left[\sum_{k=1}^{n} Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right]
$$

Take expectation of both sides.

## Exponential Height Recurrence

$$
\begin{aligned}
E\left[Y_{n}\right] & =E\left[\sum_{k=1}^{n} Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
& =\sum_{k=1}^{n} E\left[Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right]
\end{aligned}
$$

Linearity of expectation.

## Exponential Height Recurrence

$$
\begin{aligned}
E\left[Y_{n}\right] & =E\left[\sum_{k=1}^{n} Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
& =\sum_{k=1}^{n} E\left[Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
& =2 \sum_{k=1}^{n} E\left[Z_{n k}\right] \cdot E\left[\max \left\{Y_{k-1}, Y_{n-k}\right\}\right]
\end{aligned}
$$

Independence of the rank of the root from the ranks of subtree roots.

## Exponential Height Recurrence

$$
\begin{aligned}
E\left[Y_{n}\right] & =E\left[\sum_{k=1}^{n} Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
& =\sum_{k=1}^{n} E\left[Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
& =2 \sum_{k=1}^{n} E\left[Z_{n k}\right] \cdot E\left[\max \left\{Y_{k-1}, Y_{n-k}\right\}\right] \\
& \leq \frac{2}{n} \sum_{k=1}^{n} E\left[Y_{k-1}+Y_{n-k}\right]
\end{aligned}
$$

The max of two nonnegative numbers is at most their sum, and $E\left[Z_{n k}\right]=1 / n$.

## Exponential Height Recurrence

$$
\begin{aligned}
& E\left[Y_{n}\right]=E\left[\sum_{k=1}^{n} Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
&=\sum_{k=1}^{n} E\left[Z_{n k}\left(2 \cdot \max \left\{Y_{k-1}, Y_{n-k}\right\}\right)\right] \\
&=2 \sum_{k=1}^{n} E\left[Z_{n k}\right] \cdot E\left[\max \left\{Y_{k-1}, Y_{n-k}\right\}\right] \\
& \leq \frac{2}{n} \sum_{k=1}^{n} E\left[Y_{k-1}+Y_{n-k}\right] \\
&=\frac{4}{n} \sum_{k=0}^{n-1} E\left[Y_{k}\right] \quad \text { Each term appears } \\
& \quad \text { Twice }- \text { re-index. }
\end{aligned}
$$

## Solving the Recurrence

Use substitution to show that $E\left[Y_{n}\right] \leq c n^{3}$
for some positive

$$
E\left[Y_{n}\right]=\frac{4}{n} \sum_{k=0}^{n-1} E\left[Y_{k}\right]
$$

constant $c$, which we can pick sufficiently large to handle the initial conditions.

## Solving the Recurrence

Use substitution to show that $E\left[Y_{n}\right] \leq c n^{3}$
for some positive
constant $c$, which we can pick sufficiently large to handle the initial conditions.

$$
\begin{aligned}
E\left[Y_{n}\right] & =\frac{4}{n} \sum_{k=0}^{n-1} E\left[Y_{k}\right] \\
& \leq \frac{4}{n} \sum_{k=0}^{n-1} c k^{3}
\end{aligned}
$$

Substitution.

## Solving the Recurrence

Use substitution to show that $E\left[Y_{n}\right] \leq c n^{3}$
for some positive
constant $c$, which we can pick sufficiently large to handle the initial conditions.

$$
\begin{aligned}
E\left[Y_{n}\right] & =\frac{4}{n} \sum_{k=0}^{n-1} E\left[Y_{k}\right] \\
& \leq \frac{4}{n} \sum_{k=0}^{n-1} c k^{3} \\
& \leq \frac{4 c}{n} \int_{0}^{n} x^{3} d x
\end{aligned}
$$

Integral method.

## Solving the Recurrence

Use substitution to show that $E\left[Y_{n}\right] \leq c n^{3}$ for some positive constant $c$, which we can pick sufficiently large to handle the initial conditions.

$$
\begin{aligned}
E\left[Y_{n}\right] & =\frac{4}{n} \sum_{k=0}^{n-1} E\left[Y_{k}\right] \\
& \leq \frac{4}{n} \sum_{k=0}^{n-1} c k^{3} \\
& \leq \frac{4 c}{n} \int_{0}^{n} x^{3} d x \\
& =\frac{4 c}{n}\left(\frac{n^{4}}{4}\right)
\end{aligned}
$$

Compute the integral.

## Solving the Recurrence

Use substitution to
show that $E\left[Y_{n}\right] \leq c n^{3}$
for some positive
constant $c$, which we can pick sufficiently
large to handle the

$$
\begin{aligned}
E\left[Y_{n}\right] & =\frac{4}{n} \sum_{k=0}^{n-1} E\left[Y_{k}\right] \\
& \leq \frac{4}{n} \sum_{k=0}^{n-1} c k^{3} \\
& \leq \frac{4 c}{n} \int_{0}^{n} x^{3} d x \\
& =\frac{4 c}{n}\left(\frac{n^{4}}{4}\right) \\
& =c n^{3} . \quad \text { Algebra. }
\end{aligned}
$$ initial conditions.

## The Grand Finale

Putting it all together, we have

$$
2^{E[X n]} \leq E\left[2^{X n}\right]
$$

from Jensen's inequality, since
$f(x)=2^{x}$ is convex.

## The Grand Finale

Putting it all together, we have

$$
\begin{aligned}
2^{E\left[X_{n}\right]} & \leq E\left[2^{X_{n}}\right] \\
& =E\left[Y_{n}\right]
\end{aligned}
$$

Definition.

## The Grand Finale

Putting it all together, we have

$$
\begin{aligned}
2^{E\left[X_{n}\right]} & \leq E\left[2^{X_{n}}\right] \\
& =E\left[Y_{n}\right] \\
& \leq c n^{3} .
\end{aligned}
$$

What we just showed.

## The Grand Finale

Putting it all together, we have

$$
\begin{aligned}
2^{E\left[X_{n}\right]} & \leq E\left[2^{X_{n}}\right] \\
& =E\left[Y_{n}\right] \\
& \leq c n^{3} .
\end{aligned}
$$

Taking the lg of both sides yields

$$
E\left[X_{n}\right] \leq 3 \lg n+O(1)
$$

## Post Mortem

Q. Does the analysis have to be this hard?
Q. Why bother with analyzing exponential height?
Q. Why not just develop the recurrence on

$$
X_{n}=1+\max \left\{X_{k-1}, X_{n-k}\right\}
$$

directly?

## Post Mortem (Continued)

A. The inequality

$$
\max \{a, b\} \leq a+b
$$

provides a poor upper bound, since the RHS approaches the LHS slowly as $|a-b|$ increases. The bound

$$
\max \left\{2^{a}, 2^{b}\right\} \leq 2^{a}+2^{b}
$$

allows the RHS to approach the LHS more quickly as $|a-b|$ increases. By using the convexity of $f(x)=2^{x}$ via Jensen's inequality, we can manipulate the sum of exponentials, resulting in a tight analysis.

## Example Random BST

- An example of a randomly generated 500 node BST
- nodes at expected depth 9.98 , height $=17$.



## Not All Tree Operations Preserve Randomness

* Deletion algorithm described favors making left subtrees deeper than right subtrees (a deleted node is replaced with a node from the right). The exact effect of this still unknown, but if insertions and deletions are alternated $\Theta\left(N^{2}\right)$ times, expected depth is $\Theta(\sqrt{N})$.

After a quarter-million random insert/remove pairs, right-heavy tree on the previous slide, looks decidedly unbalanced and average depth becomes 12.51.

## BST Tree Height Summary

- The height $h$ of a binary search tree on $n$ items can be as high as $\mathrm{n}-1$
* However, if it is built by inserting the elements in random order, then the expected height is $\mathrm{O}(\lg \mathrm{n})$.

