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Outline

Review of last lecture: Binary Search 
Trees

Today: Red-Black Trees
Properties/Analysis
Insertion/Deletion

2-3, and 2-3-4 Trees
Slides modified from
• www.cse.unr.edu/~bebis/CS477/ 
• http://www.cs.unc.edu/~lin/COMP122-F99/
• www.dsm.fordham.edu/~agw/.../Chapter19-BalancedSearchTrees.ppt 2

Balanced Trees

http://www.cse.unr.edu/%7Ebebis/CS477/
http://www.cs.unc.edu/%7Elin/COMP122-F99/


Binary Search Tree Property

Binary search tree order 
property:

If y is in left subtree of x, 
then key [y] ≤ key [x]

If y is in right subtree of x, 
then key [y] ≥ key [x]
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Binary Search Trees - Summary
Operations on binary search trees:

SEARCH O(h)
PREDECESSOR O(h)
SUCCESOR O(h)
MINIMUM O(h)
MAXIMUM O(h)
INSERT O(h)
DELETE O(h)

These operations are fast if the height of the 
tree is small – otherwise their performance is 
similar to that of a linked list
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Tree Height
The height h of a binary search tree on n 
items can be as high as n-1

However, if it is built by inserting the 
elements in random order, then the 
expected height is O(lg n).

With red-black trees, we aim to guarantee 
that the height is always O(lg n).
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Red-Black Trees
Balanced binary search trees that 
guarantee an O(lgn) running time 
Red-black-tree

Binary search tree with an additional binary 
attribute for its nodes: color which can be 
red or black
Constrains the way nodes can be colored on 
any path from the root to a leaf:

Ensures that no path is more than twice as long as 
any other path ⇒ the tree is balanced

6



Example: RED-BLACK-TREE

For convenience we use a sentinel NIL[T] to represent all 
the null nodes at the leafs

NIL[T] has the same fields as an ordinary node
Color[NIL[T]] = BLACK
The other fields may be set to arbitrary values

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL
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Red-Black Trees
Binary search tree + 1 extra bit per node: 
the attribute color, which is either red or 
black.
All other attributes of BSTs are inherited:

key, left, right, and p (parent).

All empty trees (leaves) are colored black.
We use a single sentinel, NIL, for all the leaves 
of red-black tree T, with color[NIL] = black.
The root’s parent is also NIL[T ]. 8



Red-Black-Trees Properties
(**Satisfy the binary search tree property**)

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path 
from the root to a leaf

5. For each node, all paths from that node to descendant 
leaves contain the same number of black nodes
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Black-Height of a Node

Height of a node: the number of edges in the 
longest path to a leaf
Black-height of a node x: bh(x) is the number of 
black nodes (including NIL) on the path from x to a leaf, 
not counting x
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Important Property of 
Red-Black-Trees

A red-black tree with n internal nodes 
has height at most 2lg(n + 1)

Need to prove two claims first …
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Claim 1
Any node x with height h(x) has bh(x) ≥ h(x)/2
Proof

By property 4, at most h/2 red nodes on the path from the 
node to a leaf
Hence at least h/2 are black
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Claim 2
The subtree rooted at any node x contains 
at least 2bh(x) - 1 internal nodes
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Claim 2 (Cont’d)
Proof: By induction on h[x]
Basis: h[x] = 0 ⇒

x is a leaf (NIL[T]) ⇒
bh(x) = 0 ⇒

# of internal nodes: 20 - 1 = 0

Inductive Hypothesis: assume it is true for 
h[x]=h-1

NIL

x
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Claim 2 (Cont’d)
Inductive step: 

Prove it for h[x]=h
Let bh(x) = b, then any child y of x has: 

bh (y) =
bh (y) =

b (if the child is red), or
b - 1 (if the child is black)
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y1 y2
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Claim 2 (Cont’d)
Using inductive hypothesis, the 
number  of internal nodes for 
each child of x is at least: 

2bh(x) - 1 - 1
The subtree rooted at x contains 
at least:
(2bh(x) - 1 – 1) + (2bh(x) - 1 – 1) + 1 =

2 · (2bh(x) - 1 - 1) + 1 = 
2bh(x) - 1 internal nodes

x

l r

h

h-1

bh(l)≥bh(x)-1

bh(r)≥bh(x)-1
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Height of Red-Black-Trees (Cont’d)
Lemma: A red-black tree with n internal 

nodes has height at most 2lg(n + 1).
Proof:

n

Add 1 to both sides and then take logs: 
n + 1 ≥ 2b  ≥ 2h/2

lg(n + 1) ≥ h/2 ⇒
h ≤ 2 lg(n + 1)

root

l r

height(root) = h
bh(root) = b

number n
of internal 
nodes

≥ 2b - 1 ≥ 2h/2 - 1

since b ≥ h/2

17



Operations on RB Trees

All operations can be performed in O(lg n)
time.
The query operations, which don’t modify 
the tree, are performed in exactly the same 
way as they are in BSTs.
Insertion and Deletion are not 
straightforward. Why?
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Rotations: Local Tree 
Rearrangements

y

x

α β

γ

Left-Rotate(T, x)

γ

α

x

y

β

Right-Rotate(T, y)
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Rotations
Rotations are the basic tree-restructuring operations 
for almost all balanced search trees.
Rotation takes a red-black-tree and a node, 
Changes pointers to change the local structure, and
Does not violate the binary-search-tree property.
Left rotation and right rotation are inverses.

y

x

α β

γ

Left-Rotate(T, x)

γ

α

x

y

β

Right-Rotate(T, y)
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Left Rotation – Pseudocode
Left-Rotate (T, x)
1. y ← right[x]   // Set y.
2. right[x] ← left[y]  //Turn y’s left subtree into x’s right 

subtree.
3. if left[y] ≠ nil[T ]
4. then p[left[y]] ← x
5. p[y] ← p[x]           // Link x’s parent to y.
6. if p[x] = nil[T ]
7. then root[T ] ← y
8. else if x = left[p[x]]
9. then left[p[x]] ← y
10. else right[p[x]] ← y
11. left[y] ← x             // Put x on y’s left.
12. p[x] ← y

y

x

α β

γ

Left-Rotate(T, x)

γ
α

x

y

β

Right-Rotate(T, y)
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Rotation

The pseudo-code for Left-Rotate assumes that 
right[x] ≠ nil[T ], and
root’s parent is nil[T ].

Left Rotation on x, makes x the left child of y, and 
the left subtree of y into the right subtree of x.
Pseudocode for Right-Rotate is symmetric: 
exchange left and right everywhere.
Time: O(1) for both Left-Rotate and Right-Rotate, 
since a constant number of pointers are modified.
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Reminder: Red-Black Properties

1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both its children 

are black.

5. For each node, all paths from the node 
to descendant leaves contain the same 
number of black nodes. 23



Insertion in RB Trees
Insertion must preserve all red-black 
properties.
Should an inserted node be colored Red?
Black?
Basic steps:

Use Tree-Insert from BST (slightly modified) to 
insert a node x into T.

Procedure RB-Insert(x).
Color the node x red.
Fix the modified tree by re-coloring nodes and 
performing rotation to preserve RB tree property.

Procedure RB-Insert-Fixup.
24



Insertion
RB-Insert(T, z)
1. y ← nil[T]
2. x ← root[T]
3. while x ≠ nil[T]
4. do y ← x
5. if key[z] < key[x]
6. then x ← left[x]
7. else x ←

right[x]
8. p[z] ← y
9. if y = nil[T]
10. then root[T] ← z
11. else if key[z] < key[y]
12. then  left[y] ← z
13. else right[y] ← z

RB-Insert(T, z) Contd.
14. left[z] ← nil[T]
15. right[z] ← nil[T]
16. color[z] ← RED
17. RB-Insert-Fixup (T, z)

How does it differ from the 
Tree-Insert procedure of BSTs?
Which of the RB properties 
might be violated?

Fix the violations by calling 
RB-Insert-Fixup.
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Red-Black-Trees Properties
(**Satisfy the binary search tree property**)

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path 
from the root to a leaf

5. For each node, all paths from that node to descendant 
leaves contain the same number of black nodes

26
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Insertion – Fixup

Problem: we may have one pair of 
consecutive reds where we did the 
insertion.
Solution: rotate it up the tree and away…
Three cases have to be handled…
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Insertion – Fixup

RB-Insert-Fixup (T, z)
1. while color[p[z]] = RED
2. do if p[z] = left[p[p[z]]]
3. then y ← right[p[p[z]]]
4. if color[y] = RED
5. then color[p[z]] ← BLACK  // Case 1
6. color[y] ← BLACK       // Case 1
7. color[p[p[z]]] ← RED   // Case 1
8. z ← p[p[z]]                   // Case 1
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Insertion – Fixup

RB-Insert-Fixup(T, z) (Contd.)
9. else if z = right[p[z]]  // color[y] ≠ RED
10. then z ← p[z]                          // Case 2
11. LEFT-ROTATE(T, z) // Case 2
12. color[p[z]] ← BLACK            // Case 3
13. color[p[p[z]]] ← RED             // Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14
16. with “right” and “left” exchanged)
17. color[root[T ]] ← BLACK
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Correctness

Loop invariant:
At the start of each iteration of the while
loop,

z is red.
If p[z] is the root, then p[z] is black.
There is at most one red-black violation:

Property 2: z is a red root, or
Property 4: z and p[z] are both red.
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Correctness – Contd.
Initialization: √
Termination: The loop terminates only if p[z] is 
black. Hence, property 4 is OK. 
The last line ensures property 2 always holds.
Maintenance: We drop out when z is the root 
(since then p[z] is the sentinel nil[T ], which is 
black). When we start the loop body, the only 
violation is of property 4.

There are 6 cases, 3 of which are symmetric to the 
other 3. We consider cases in which p[z] is a left 
child.
Let y be z’s uncle (p[z]’s sibling). 31



Case 1 – Uncle y is Red

p[p[z]] (z’s grandparent) must be black, since z and p[z] are both red 
and there are no other violations of property 4.

Make p[z] and y black ⇒ now z and p[z] are not both red. But 
property 5 might now be violated.

Make p[p[z]] red ⇒ restores property 5.
The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

C

A D

B
α

β γ

δ ε
z

y
C

A D

B
α

β γ

δ ε

new z

z is a right child here.
Similar steps if z is a left child.

p[z]

p[p[z]]

Color flip!
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Case 2 – y is Black, z is a Right Child

Left rotate around p[z], p[z] and z switch roles ⇒ now z is 
a left child, and both z and p[z] are red.
Takes us immediately to case 3.

C

A

Bα

β γ

δ

z

y

C

B

A

α β

γ

δ

z

y

p[z] p[z]
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Case 3 – y is Black, z is a Left Child

Make p[z] black and p[p[z]] red.
Then right rotate on p[p[z]]. Ensures property 4 is 
maintained.
No longer have 2 reds in a row.
p[z] is now black ⇒ no more iterations.

B

A

α β γ δ

C

B

A

α β

γ

δ y
p[z]

C

z
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Example Insertion
11

Insert 4

2 14

1 157

85

4

y
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1 157
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4

z

Case 1

y

z and p[z] are both red
z’s uncle y is redz

z and p[z] are both red
z’s uncle y is black
z is a right child

Case 2

11

2

14

1

15

7

8

5

4

z
y Case 3

z and p[z] are red
z’s uncle y is black
z is a left child

112

141

15

7

85

4

z
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Algorithm Analysis
O(lg n) time to get through RB-Insert up to 
the call of RB-Insert-Fixup.
Within RB-Insert-Fixup:

Each iteration takes O(1) time.
Each iteration but the last moves z up 2 levels.
O(lg n) levels ⇒ O(lg n) time.
Thus, insertion in a red-black tree takes O(lg n)
time.
Note: there are at most 2 rotations overall.
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Animations

Animation:
https://www.youtube.com/watch?v=rcDF8IqTnyI

Live demo:
http://www.cs.usfca.edu/~galles/visualization/RedBlack.
html

Video explanations
http://www.csanimated.com/animation.php?t=Red-
black_tree
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Deletion

Deletion, like insertion, should preserve all 
the RB properties.
The properties that may be violated 
depends on the color of the deleted node.

Red – OK. Why?
Black?

Steps:
Do regular BST deletion.
Fix any violations of RB properties that may 
result. 38



Deletion

RB-Delete(T, z)
1. if left[z] = nil[T] or right[z] = nil[T]
2. then y ← z
3. else y ← TREE-SUCCESSOR(z)
4. if left[y] = nil[T ]
5. then x ← left[y]
6. else x ← right[y]
7. p[x] ← p[y]   // Do this, even if x is nil[T]

39

y is the node we really delete
x is the node that moves into y’s original position



Deletion
RB-Delete (T, z) (Contd.)
8. if p[y] = nil[T ]
9. then root[T ] ← x
10. else if y = left[p[y]]
11. then left[p[y]] ← x
12. else right[p[y]] ← x
13. if y = z
14. then key[z] ← key[y]
15. copy y’s satellite data into z
16. if color[y] = BLACK
17. then RB-Delete-Fixup(T, x)
18. return y

The node passed to 
the fixup routine is 
the lone child of the 
spliced up node, or 
the sentinel.
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Red-Black-Trees Properties
(**Satisfy the binary search tree property**)

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path 
from the root to a leaf

5. For each node, all paths from that node to descendant 
leaves contain the same number of black nodes

41
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RB Properties Violation

If y is black, we could have violations of 
red-black properties:

Prop. 1. OK.
Prop. 2. If y is the root and x is red, then the 
root has become red.
Prop. 3. OK.
Prop. 4. Violation if p[y] and x are both red.
Prop. 5. Any path containing y now has 1 
fewer black node.
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RB Properties Violation
Prop. 5. Any path containing y now has 1 fewer 
black node.

Correct by giving x an “extra black.”
Add 1 to count of black nodes on paths containing x.
Now property 5 is OK, but property 1 is not.
x is either doubly black (if color[x] = BLACK) or red 
& black (if color[x] = RED).
The attribute color[x] is still either RED or BLACK. 
No new values for color attribute.
In other words, the extra blackness on a node is by 
virtue of x pointing to the node.

Remove the violations by calling RB-Delete-
Fixup. 43



Deletion – Fixup

RB-Delete-Fixup(T, x)
1. while x ≠ root[T ] and color[x] = BLACK
2. do if x = left[p[x]]
3. then w ← right[p[x]]
4. if color[w] = RED
5. then color[w] ← BLACK             // Case 1
6. color[p[x]] ← RED               // Case 1
7. LEFT-ROTATE(T, p[x])      // Case 1
8. w ← right[p[x]]                       // Case 1
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RB-Delete-Fixup(T, x) (Contd.)
/* x is still left[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] = BLACK
10. then color[w] ← RED                              // Case 2
11. x ← p[x]                                          // Case 2
12. else if color[right[w]] = BLACK
13. then color[left[w]] ← BLACK        // Case 3
14. color[w] ← RED                   // Case 3
15. RIGHT-ROTATE(T,w) // Case 3
16. w ← right[p[x]]                      // Case 3
17. color[w] ← color[p[x]]                        // Case 4
18. color[p[x]] ← BLACK                         // Case 4
19. color[right[w]] ← BLACK                   // Case 4
20. LEFT-ROTATE(T, p[x])                     // Case 4
21. x ← root[T ]                                       // Case 4
22. else (same as then clause with “right” and “left” 

exchanged)
23. color[x] ← BLACK
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Deletion – Fixup
Idea: Move the extra black up the tree until x points 
to a red & black node ⇒ turn it into a black node,
x points to the root ⇒ just remove the extra black, 
or 
We can do certain rotations and re-colorings to 
finish.
Within the while loop:

x always points to a non-root doubly black node.
w is x’s sibling.
w cannot be nil[T ], since that would violate property 5 at 
p[x].

8 cases in all, 4 of which are symmetric to the 
other.
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Case 1 – w is Red

w must have black children.
Make w black and p[x] red (because w is red p[x] couldn’t 
have been red).
Then left rotate on p[x].
New sibling of x was a child of w before rotation ⇒ must 
be black.
Go immediately to case 2, 3, or 4.

B

A D

C E
α β

γ δ ε ζ

B

A
α β γ δ

ε ζ

x w
D

C

E

x new w

p[x]

47



Case 2 – w is Black, Both w’s 
Children are Black

Take 1 black off x (⇒ singly black) and off w (⇒ red).
Move that black to p[x].
Do the next iteration with p[x] as the new x.
If entered this case from case 1, then p[x] was red ⇒ new 
x is red & black ⇒ color attribute of new x is RED ⇒ loop 
terminates. Then new x is made black in the last line.

B

A D

C E
α β

γ δ ε ζ

x w
B

A D

C E
α β

γ δ ε ζ

new xc c
p[x]
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Case 3 – w is Black, w’s Left Child 
is Red, w’s Right Child is Black

Make w red and w’s left child black.
Then right rotate on w.
New sibling w of x is black with a red right child ⇒ case 4.

B

A D

C E
α β

γ δ ε ζ

x w
B

A C

Dα β
γ

δ

ε ζ

c c

E

new wx
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Case 4 – w is Black, w’s Right Child is 
Red

Make w be p[x]’s color (c).
Make p[x] black and w’s right child black.
Then left rotate on p[x].
Remove the extra black on x (⇒ x is now singly black) 
without violating any red-black properties.
All done. Setting x to root causes the loop to terminate.

B

A D

C E
α β

γ δ ε ζ

B

A
α β γ δ

ε ζ

x w
D

C

E

x

c

c’
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Analysis

O(lg n) time to get through RB-Delete up 
to the call of RB-Delete-Fixup.
Within RB-Delete-Fixup:

Case 2 is the only case in which more 
iterations occur.

x moves up 1 level.
Hence, O(lg n) iterations.

Each of cases 1, 3, and 4 has 1 rotation ⇒ ≤
3 rotations in all.
Hence, O(lg n) time.
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Animations

Animation:
https://www.youtube.com/watch?v=rcDF8IqTnyI

Live demo:
http://www.cs.usfca.edu/~galles/visualization/RedBlack.
html

Video explanations
http://www.csanimated.com/animation.php?t=Red-
black_tree
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Hysteresis : or the Value of 
Laziness

The red nodes give us some slack – we 
don’t have to keep the tree perfectly 
balanced.
The colors make the analysis and code 
much easier than some other types of 
balanced trees.
Still, these aren’t free – balancing costs 
some time on insertion and deletion. 
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2-3 Trees
• A 2-3 tree is not a binary tree
• A 2-3 tree is always fully balanced, so 

height is O(lg n)
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2-3 Trees
Placing data items in nodes of a 2-3 tree

A 2-node (has two children) must contain single 
data item greater than left child’s item(s) and 
less than right child’s item(s)
A 3-node (has three children) must contain two 
data items, S and L , such that 

S is greater than left child’s item(s) and less than 
middle child’s item(s); 
L is greater than middle child’s item(s) and less than 
right child’s item(s).

Leaf may contain either one or two data items.



2-3 Trees
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2-3 Tree Example

58



Traversing a 2-3 Tree

Traverse 2-3 tree 
in sorted order 
by performing 
analogue of 
inorder traversal 
on binary tree:



Searching a 2-3 Tree

Retrieval operation for 2-3 tree similar to 
retrieval operation for binary search tree



Inserting Data into a 2-3 Tree
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Inserting Data into a 2-3 Tree
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Inserting Data into a 2-3 Tree
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Inserting Data into a 2-3 Tree
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Inserting Data into a 2-3 Tree
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Inserting Data into a 2-3 Tree
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Deleting Data from a 2-3 Tree
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Deleting Data from a 2-3 Tree
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Deleting Data from a 2-3 Tree

69



2-3-4 Trees
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2-3-4 Trees
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Red-Black Trees = 2-3-4 Trees
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Red-Black Trees
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AVL Trees
Named for inventors, Adel’son-Vel’skii and 
Landis
A balanced binary search tree

any node in an AVL tree has left and right 
subtrees whose heights differ by more than 1

Has guaranteed O(lg n) height
Not as efficient as red-black trees
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