CS161.
Design and Analysis of
Algorithms

=4 .
v, W 4
J
| ecture 10

Leonidas Guibas

Qutline

+ Review of last lecture: Binary Search
Trees

¢+ Today: Red-Black Trees
¢ Properties/Analysis
+Insertion/Deletion Balanced Trees

+2-3, and 2-3-4 Trees

Slides modified from

e www.cse.unr.edu/~bebis/CS477/

e http://www.cs.unc.edu/~lin/COMP122-F99/

« www.dsm.fordham.edu/~agw/.../Chapterl9-BalancedSearchTrees.ppt 2

http://www.cse.unr.edu/%7Ebebis/CS477/
http://www.cs.unc.edu/%7Elin/COMP122-F99/

Binary Search Tree Property

+Binary search tree order
property:

+|f y Is In left subtree of x,
then key [y] < key [x]

+|f y IS In right subtree of x,
then key [y] > key [x]

Red-black trees are binary search trees.

Binary Search Trees - Summary
+ Operations on binary search trees:

¢ SEARCH O(h)
¢ PREDECESSOR O(h)
¢ SUCCESOR O(h)
¢ MINIMUM O(h)
¢ MAXIMUM O(h)
¢ INSERT O(h)
¢ DELETE O(h)

+ These operations are fast if the height of the
tree is small — otherwise their performance is
similar to that of a linked list

Tree Height

+ The height h of a binary search tree on n
items can be as high as n-1

+ However, If it Is bullt by inserting the
elements in random order, then the
expected height is O(lg n).

+ With red-black trees, we aim to guarantee
that the height Is always O(lg n).

Red-Black Trees fﬁ\

+ Balanced binary search trees that
guarantee an O(Ign) running time

+ Red-black-tree

+Binary search tree with an additional binary
attribute for its nodes: color which can be
red or black

+ Constrains the way nodes can be colored on
any path from the root to a leaf:

Ensures that no path is more than twice as long as
any other path = the tree is balanced

Example: Rep-BLACK-TREE

O (47
) (&

NIL

NIL J{ NIL NIL J U NIL

¢ For convenience we use a sentinel NIL[T] to represent all
the null nodes at the leafs
¢ NIL[T] has the same fields as an ordinary node
¢ Color[NIL[T]]= BLACK
+ The other fields may be set to arbitrary values

Red-Black Trees

¢+ Binary search tree + 1 extra bit per node:
the attribute color, which i1s either red or
black.

+ All other attributes of BSTs are inherited:
ekey, left, right, and p (parent).

+ All empty trees (leaves) are colored black.

+\We use a single sentinel, NIL, for all the leaves
of red-black tree T, with color[NIL] = black.

¢+ The root’s parent is also NIL[T].

Wb

.

Red-Black-Trees Properties

(**Satisfy the binary search tree property**)
Every node is either red or black

The root is black

Every leaf (NIL) is black

If a node Is red, then both its children are black
: : local
 No two consecutive red nodes on a simple path

from the root to a leaf

For each node, all paths from that node to descendant
leaves contain the same number of black nodes

global

Black-Height of a Node

h=4

#Height of a node: the number of edges in the
longest path to a leaf

¢+ Black-height of a node X: bh(x) is the number of
black nodes (including NIL) on the path from x to a leaf,

not counting X

10

Important Property of
Red-Black-Trees

A red-black tree with n internal nodes
has height at most 2lg(n + 1)

¢+ Need to prove two claims first ...

11

Clam 1

¢ Any node x with height h(x) has bh(x) 2 h(x)/2
¢ Proof

+ By property 4, at most h/2 red nodes on the path from the
node to a leaf

+ Hence at least h/2 are black

Claim 2

The subtree rooted at any node x contains
at least 2°h) - 1 internal nodes

13

Claim 2 (Cont’d)
Proof: By induction on h[x]
Basis: h[x]=0=
x is a leaf (NIL[T]) =
bh(x) =0 =

of internal nodes: 2°-1=0

X
NIL

Inductive Hypothesis: assume it Is true for
h[x]=h-1

14

Claim 2 (Cont’d)

Inductive step:
¢ Prove it for h[x]=h

+ Let bh(x) = b, then any child y of x has:
¢ bh (y) = b (if the child is red), or
¢ bh (y)= b -1 (if the child is black)

15

Claim 2 (Cont’d)

+ Using inductive hypothesis, the
number of internal nodes for
each child of x Is at least:

th(x)-l -1

The subtree rooted at x contains
at least:

(th(x)—l - 1) + (th(x)-l - 1) + 1=

bh())2bh(x)-1

2 - (2bh)-1-1)+ 1= bh(r)2bh(x)-1
2bh(x) - 1 internal nodes

h-1

16

Height of Red-Black-Trees (Cont'd)

Lemma: A red-black tree with n internal
nodes has height at most 2Ilg(n + 1).

Proof' height(root) = h @
. bh(root) = b
n s2b-1 »2h2_1 o
number n
of internal since b > h/2
nodes

+Add 1 to both sides and then take logs:
nh+1>2b>2h2
lg(h +1) > h/2 =
h<2lg(n+1)

Operations on RB Trees

+ All operations can be performed in O(lg n)
time.

+ The query operations, which don’t modify
the tree, are performed In exactly the same
way as they are in BSTs.

#|nsertion and Deletion are not
straightforward. \Why?

18

Rotations: Local Tree
Rearrangements

Left-Rotate(T, x)

a Right-Rotate(T, y) /4

g7 “/,B

Internal tree rebalancing operations

19

Rotations

+ Rotations are the basic tree-restructuring operations
for almost all balanced search trees.

+ Rotation takes a red-black-tree and a node,

¢+ Changes pointers to change the local structure, and
+ Does not violate the binary-search-tree property.

+ Left rotation and right rotation are inverses.

Left-Rotate(T, x)

a Right-Rotate(T, y) /4

g7 “/,3 2

Left Rotation — Pseudocode

Left-Rotate (T, x)

1. y <« right[x] /] Sety.

2. right[x] « leftly] //Turny’s left subtree into X’s right
subtree.

3. if leftly] # nil[T]

4. then pl[left]y]] « x

5. ply] <« p[X] /[Link X’s parent to y.

6. if p[x]=nil[T]

7. then root[T] « vy Left-Rotate(T, x)

8. else if x = left[p[x]] a Right-Rotate(T, y) /4
Q. then left[p[x]] « vy £ Y)

10. else right[p[x]] « vy

11. left]y] « x [/ Put x on y’s left.

12. p[X] <V

Rotation

¢+ The pseudo-code for Left-Rotate assumes that
¢ right[x] = nil[T], and
+ root’s parent is nil[T].
+ Left Rotation on x, makes x the left child of y, and
the left subtree of y into the right subtree of x.

¢+ Pseudocode for Right-Rotate is symmetric:
exchange left and right everywhere.

¢+ Time: O(1) for both Left-Rotate and Right-Rotate,
since a constant number of pointers are modified.

22

Reminder: Red-Black Properties

Every node Is either red or black.
The root Is black.

Every leaf (NIL) is black.

If a node Is red, then both its children
are black.

-l A

5. For each node, all paths from the node
to descendant leaves contain the same
number of black nodes. s

Insertion In RB Trees

¢ Insertion must preserve all red-black
properties.

+ Should an inserted node be colored Red?
Black?

+ Basic steps:

¢+ Use Tree-Insert from BST (slightly modified) to
Insert a node x into T.

¢ Procedure RB-Insert(x).
#+ Color the node x red.

+ Fix the modified tree by re-coloring nodes and
performing rotation to preserve RB tree property.

¢+ Procedure RB-Insert-Fixup.

24

Insertion

RB-Insert(T, z)

NOo bk owbdPE

=

9.

10.
11.
12.
13.

y < nil[T]
X <— root[T]
while x = nil[T]
doy <« X
if key[z] < key[X]
then x « left[X]
else X «

right[x]
plz] <y
if y =nil[T]
then root[T] « z
else if key[z] < key[y]
then leftly] « z
else righty] <« z

RB-Insert(T, z) Contd.

14. left[z] < nil[T]

15. right[z] < nil[T]

16. color[z] « RED

17. RB-Insert-Fixup (T, 2)

How does it differ from the
Tree-Insert procedure of BSTs?

Which of the RB properties
might be violated?

Fix the violations by calling
RB-Insert-Fixup.

25

Wb

.

Red-Black-Trees Properties

(**Satisfy the binary search tree property**)
Every node is either red or black

The root is black

Every leaf (NIL) is black

If a node Is red, then both its children are black
: : local
 No two consecutive red nodes on a simple path

from the root to a leaf

For each node, all paths from that node to descendant
leaves contain the same number of black nodes

global

26

Insertion — FiIxup

+ Problem: we may have one pair of
consecutive reds where we did the
Insertion.

+ Solution: rotate It up the tree and away...

Three cases have to be handled...

d

27

Insertion — Fixup

RB-Insert-Fixup (T, z2)
while color[p[z]] = RED

do If p[z] = left[p[p[z]]]

then y « right[p[p[z]]]
If color[y] = RED

then color[p[z]] « BLACK // Case 1
color[y] « BLACK /[Case 1
color[p[p[z]]] < RED // Case 1
Z < p[p[z]] /[Case 1

0 N O O1 =00 D

28

Insertion — Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p|[z]] // color[y] # RED

10. then z « p|z] /[Case 2
11. LEFT-ROTATE(T, z) // Case 2
12. color[p[z]] « BLACK I/ Case 3
13. color[p[p[z]]] « RED I/ Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14

16. with “right” and “left” exchanged)

17. color[root|[T]] « BLACK

29

Correctness

Loop invariant:

+ At the start of each iteration of the while
loop,
+7 IS red.
+If p[z] Is the root, then p|z] is black.

+There Is at most one red-black violation:
¢«Property 2: z Is a red root, or
+«Property 4: z and p[z] are both red.

30

Correctness — Contd.

¢ Initialization:

¢ Termination: The loop terminates only if p[z] Is
black. Hence, property 4 is OK.
The last line ensures property 2 always holds.

¢+ Maintenance: We drop out when z is the root
(since then p[z] is the sentinel nil[T], which is
black). When we start the loop body, the only
violation is of property 4.

+ There are 6 cases, 3 of which are symmetric to the
other 3. We consider cases in which p[z] is a left
child.

+ Let y be z's uncle (p[z]'s sibling). 31

Case 1 — Uncle yis Red

NEW Z

plplz]]

y Color flip!

€ o

Z is a right child here.
Similar steps if z is a left child.

B Y B Y

+ p[p[z]] (z's grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

+ Make p[z] and y black = now z and p[z] are not both red. But
property 5 might now be violated.

+ Make p[p[z]] red = restores property 5.
+ The next iteration has p[p[z]] as the new z (i.e., Z moves up 2 levels).

32

Case 2 + y Is Black, z is a Right Child

+ Left rotate around p[z], p[z] and z switch roles = now z is
a left child, and both z and p[z] are red.

+ Takes us immediately to case 3.

33

Case 3 -y s Black, z i1s a Left Child

+ Make p[z] black and p[p][z]] red.

+ Then right rotate on p[p[z]]. Ensures property 4 is
maintained.

+ No longer have 2 reds in a row.
¢ p[z] is now black = no more iterations.

34

Example Insertion

Insert 4

Case 1 Case 2

z and p[z] are both red

z and p[z] are both red
z @ Z's uncle y is red

z's uncle y is black
z is a right child

1) @

VA

e y CaseS: 9 @
‘@ ® 15 LV G 6 @

@/ (5) z and p[z] are red (4)

z’s uncle y is black
9 z is a left child 35

Algorithm Analysis

+O(lg n) time to get through RB-Insert up to
the call of RB-Insert-Fixup.

+ Within RB-Insert-Fixup:
¢« Each iteration takes O(1) time.
+«Each iteration but the last moves z up 2 levels.
+0O(lg n) levels = O(lg n) time.

+Thus, insertion in a red-black tree takes O(lg n)
time.

#Note: there are at most 2 rotations overall.

36

Animations

+ Animation:
¢ https://www.youtube.com/watch?v=rcDF8IgTnyl

+ Live demo:
¢+ http://www.cs.usfca.edu/~galles/visualization/RedBlack.

html

+ Video explanations

¢ http://www.csanimated.com/animation.php?t=Red-
black tree

37

https://www.youtube.com/watch?v=rcDF8IqTnyI
http://www.cs.usfca.edu/%7Egalles/visualization/RedBlack.html
http://www.csanimated.com/animation.php?t=Red-black_tree

Deletion

¢ Deletion, like insertion, should preserve all

the

RB properties.

+ The properties that may be violated
depends on the color of the deleted node.

+Red — OK. Why?

+B
+ Ste

ack?

0S.

+Do reqular BST deletion.
+Fix any violations of RB properties that may

result.

38

Deletion

RB-Delete(T, 2)
If left[z] = nil[T] or right[z] = nil[T]
theny <z
elsey <~ TREE-SUCCESSOR(z)
If lefty] = nil[T]
then x < left[y]
else x < rightl[y]
P[X] <— ply] // Do this, even if x is nil[T]

N o O~ RE

y is the node we really delete
X is the node that moves into y’s original position

39

Deletion

RB-Delete (T, z) (Contd.)

8. ifply] = nil[T]
9. thenroot[T]« X
10. else if y = left[p[y]]

11. then left[p[y]] < X
12. else right[p[y]] <« x
13. 1fy =z

14. then key[z] < key|y]

15. copy y’s satellite data into z
16. if color[y] = BLACK

17. then RB-Delete-Fixup(T, x)
18. returny

The node passed to

the fixup routine is

the lone child of the
spliced up node, or

the sentinel.

40

Wb

.

Red-Black-Trees Properties

(**Satisfy the binary search tree property**)
Every node is either red or black

The root is black

Every leaf (NIL) is black

If a node Is red, then both its children are black
: : local
 No two consecutive red nodes on a simple path

from the root to a leaf

For each node, all paths from that node to descendant
leaves contain the same number of black nodes

global

41

RB Properties Violation

+|f y Is black, we could have violations of
red-black properties:
+Prop. 1. OK.

¢Prop. 2. If y Is the root and x Is red, then the
root has become red.

+Prop. 3. OK.
+Prop. 4. Violation if p[y] and x are both red.

¢+Prop. 5. Any path containing y now has 1
fewer black node.

42

RB Properties Violation

¢ Prop. 5. Any path containing y now has 1 fewer
black node.

+ Correct by giving x an “extra black.”

+ Add 1 to count of black nodes on paths containing X.

+ Now property 5 is OK, but property 1 is not.

+ X IS either doubly black (if color[x] = BLACK) or red
& black (if color[x] = RED).

+ The attribute color[x] is still either RED or BLACK.
No new values for color attribute.

+ In other words, the extra blackness on a node is by
virtue of x pointing to the node.

+ Remove the violations by calling RB-Delete-
Fixup.

43

Deletion — Fixup

RB-Delete-Fixup(T, x)

LEFT-ROTATE(T, p[x]) [//Case 1
W « right[p[x]] // Case 1

1. while x = root[T] and color[x] = BLACK

2. do if x = left[p[X]]

3. then w « right[p[x]]

4. If color[w] = RED

5. then colorfw] « BLACK /[Case 1
6. color[p[X]] « RED /[Case 1
7.

8.

a4

RB-Delete-Fixup(T, x) (Contd.)

9.

10.

11.
12.

13.

14.
15.

16.
17.
18.
19.
20.
21.
22.

[* x i1s still left[p[x]] */
If color[leftjw]] = BLACK and color|right[w]] = BLACK

then color[w] «— RED /| Case 2

X <— P[X] /[Case 2
else if color[rightjw]] = BLACK

then color[leftjw]] «— BLACK /| Case 3

color[w] «— RED I/ Case 3
RIGHT-ROTATE(T,w) /l Case 3
w < right[p[x]] /[Case 3
color[w] < color[p[X]] I/ Case 4
color[p[x]] «— BLACK /[Case 4
color[right[w]] «— BLACK /[Case 4
LEFT-ROTATE(T, p[Xx]) I/l Case 4
X <— root[T] /[l Case 4

else (same as then clause with “right” and “left”
exchanged)

23. color[x] « BLACK

45

Deletion — Fixup

+ |dea: Move the extra black up the tree until x points
to a red & black node = turn it into a black node,

X points to the root = just remove the extra black,
or

+ \We can do certain rotations and re-colorings to
finish.
+ Within the while loop:
¢ X always points to a non-root doubly black node.
¢ W IS X’s sibling.
¢+ W cannot be nil[T], since that would violate property 5 at
p[x].
¢+ 8 cases in all, 4 of which are symmetric to the
other.

46

Case 1 —-wis Red
p[X]

y o0 & C

+ W must have black children.

+ Make w black and p[x] red (because w is red p[x] couldn’t
have been red).

+ Then left rotate on pl[x].

¢+ New sibling of x was a child of w before rotation = must
be black.

+ Go iImmediately to case 2, 3, or 4.
47

Case 2 — w Is Black, Both w’s
Children are Black

new X

p[X]

Yy o6& G y 8 & C
¢+ Take 1 black off x (= singly black) and off w (= red).
+ Move that black to p[x].
+ Do the next iteration with p[x] as the new x.

+ If entered this case from case 1, then p[x] was red = new
X IS red & black = color attribute of new x is RED = loop

terminates. Then new X is made black in the last line. 48

Case 3 — w Is Black, w’s Left Child
IS Red, w’s Right Child is Black

+ Make w red and w’s left child black.
+ Then right rotate on w.
+ New sibling w of x is black with a red right child = case 4.

49

Case 4 — w Is Black, w’s Right Child is
Red

y o0 & C

+ Make w be p[x]'s color (c).
+ Make p[x] black and w’s right child black.
+ Then left rotate on p[x].

¢+ Remove the extra black on x (= x is now singly black)
without violating any red-black properties.

+ All done. Setting x to root causes the loop to terminate. 50

Analysis

+O(lg n) time to get through RB-Delete up
to the call of RB-Delete-Fixup.

+ Within RB-Delete-Fixup:

+Case 2 Is the only case in which more
iterations occur.
+X moves up 1 level.
+Hence, O(Ig n) iterations.

#+Each of cases 1, 3, and 4 has 1 rotation = <
3 rotations In all.

+Hence, O(lg n) time.

51

Animations

+ Animation:
¢ https://www.youtube.com/watch?v=rcDF8IgTnyl

+ Live demo:
¢+ http://www.cs.usfca.edu/~galles/visualization/RedBlack.

html

+ Video explanations

¢ http://www.csanimated.com/animation.php?t=Red-
black tree

52

https://www.youtube.com/watch?v=rcDF8IqTnyI
http://www.cs.usfca.edu/%7Egalles/visualization/RedBlack.html
http://www.csanimated.com/animation.php?t=Red-black_tree

Hysteresis : or the Value of
Laziness

+ The red nodes give us some slack — we
don’t have to keep the tree perfectly
balanced.

+ The colors make the analysis and code
much easier than some other types of
balanced trees.

+ Still, these aren’t free — balancing costs
some time on Insertion and deletion.

53

43

116 00

46 161 345 430

=1
=
Ly

b
[y

236

aTh 455 506

43 fifi a6 130 140 185 124 a0 344 365 280 436 Gl 407 525

S1 Q70 121013201340 144 W1sz R2lo Rz 2 0rs] 332 3521374 352 N 420 § 440 465 §47 1 B496) BE

12131 160 249 Sk

2-3 Trees

o A2-3treeis not a binary tree
e A 2-3 tree iIs always fully balanced, so
height is O(lg n)

55

2-3 Trees

+Placing data items in nodes of a 2-3 tree

+A 2-node (has two children) must contain single
data item greater than left child’s item(s) and
less than right child’s item(s)

+A 3-node (has three children) must contain two
data items, S and L , such that

+S IS greater than left child’s item(s) and less than
middle child’s item(s);

+L iIs greater than middle child’s item(s) and less than
right child’s item(s).

+|eaf may contain either one or two data items.

Data items < S

(a)

2-3 Trees

Data items > S

Data items < S

(b)

Data items > L

Data tems > S

and < L

57

2-3 Tree Example

58

Traversing a 2-3 Tree

inorder(23Tree: TwoThreeTree): void

& Traverse 2'3 tree if (23Tree’s root node r is a leaf)
Visit the data item(s)

|n SOrtEd Order e{z]se if (r has two data items)
by performing .- 'i['llfii"r'i'i:l".'f" '.:.-"a'}'." subtree of 23Tree’s root)

.] F P !
I |'."--"-'|l 'r."."l'.'. JIFST ddid -'"rl.'n'.'lll

analogue Of inorder(middle subtree of 23Tree’s root)

T Fa » T | ¥ J
J |r'l-.'l'r 'r.lll.;‘l'_'l I"'-»:_.I_.l'-"_ll.'l-\'._.'I I,I|l|'|r.'l:|r .III|.I_I.'!.II.;I

inorder traversal inorder ightsublee of 23Tree s oor)
On bi nary tree: ‘?] se // r has one data item

inorder (left subtree of 23Tree's root)
I A ."-." 'r,l'l," & -:|'|l| |"|'I-: I I |'.I._J|".': I

- SR | L 'I|| 1 I-_... 33 T £
1norder (right subtree of 23Tree s root)

Searching a 2-3 Tree

+ Retrieval operation for 2-3 tree similar to
retrieval operation for binary search tree

(b)

(1 0

Inserting Data into a 2-3 Tree

61

Inserting Data into a 2-3 Tree

CDE@ED @ DO®

62

Inserting Data into a 2-3 Tree

63

Inserting Data into a 2-3 Tree

64

Inserting Data into a 2-3 Tree

(d)
(3? 50)

CEEDIOIO ‘\

65

Inserting Data into a 2-3 Tree

(3[1 3 5) @

]
(10 20) (33 @ (a0)

(?D 9[1)

66

Deleting Data from a 2-3 Tree

(@)

Delete value from leaf Merge nodes by deleting empty leaf and moving 80 down

67

Deleting Data from a 2-3 Tree

()

68

Deleting Data from a 2-3 Tree

.4\./’\.

n'tw Redistribute

69

2-3-4 Trees

70

2-3-4 Trees

QSMLQ

Data items < S /
Data items > S and < M

AN

Data items > L
Data items > M and < L

71

Red-Black Trees = 2-3-4 Trees

@) — = Red pointer
@ - Black pointer
AN

—an

a b c d a b c d
(b) Q @
’ N EAR
SRR
a b C a b

b C

712

(10 20) (323334) (36)

Red-Black Trees

!

“x
:
(1) (9) (9

®E & &
KO (&) (&

73

AVL Trees

+ Named for inventors, Adel’'son-Vel’'skii and
Landis

+ A balanced binary search tree

+any node in an AVL tree has left and right
subtrees whose heights differ by more than 1

+Has guaranteed O(lg n) height
+ Not as efficient as red-black trees

	CS161:�Design and Analysis of Algorithms�����Lecture 10�Leonidas Guibas
	Outline
	Binary Search Tree Property
	Binary Search Trees - Summary
	Tree Height
	Red-Black Trees
	Example: RED-BLACK-TREE
	Red-Black Trees
	Red-Black-Trees Properties
	Black-Height of a Node
	Important Property of �Red-Black-Trees
	Claim 1
	Claim 2
	Claim 2 (Cont’d)
	Claim 2 (Cont’d)
	Claim 2 (Cont’d)
	Height of Red-Black-Trees (Cont’d)
	Operations on RB Trees
	Rotations: Local Tree Rearrangements
	Rotations
	Left Rotation – Pseudocode
	Rotation
	Reminder: Red-Black Properties
	Insertion in RB Trees
	Insertion
	Red-Black-Trees Properties
	Insertion – Fixup
	Insertion – Fixup
	Insertion – Fixup
	Correctness
	Correctness – Contd.
	Case 1 – Uncle y is Red
	Case 2 – y is Black, z is a Right Child
	Case 3 – y is Black, z is a Left Child
	Example Insertion
	Algorithm Analysis
	Animations
	Deletion
	Deletion
	Deletion
	Red-Black-Trees Properties
	RB Properties Violation
	RB Properties Violation
	Deletion – Fixup
	Slide Number 45
	Deletion – Fixup
	Case 1 – w is Red
	Case 2 – w is Black, Both w’s Children are Black
	Case 3 – w is Black, w’s Left Child is Red, w’s Right Child is Black
	Case 4 – w is Black, w’s Right Child is Red
	Analysis
	Animations
	Hysteresis : or the Value of Laziness
	Slide Number 54
	2-3 Trees
	2-3 Trees
	2-3 Trees
	2-3 Tree Example
	Traversing a 2-3 Tree
	Searching a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Deleting Data from a 2-3 Tree
	Deleting Data from a 2-3 Tree
	Deleting Data from a 2-3 Tree
	2-3-4 Trees
	2-3-4 Trees
	Red-Black Trees = 2-3-4 Trees
	Red-Black Trees
	AVL Trees

