
CS161:
Design and Analysis of

Algorithms

Lecture 10
Leonidas Guibas

1

Outline

Review of last lecture: Binary Search
Trees

Today: Red-Black Trees
Properties/Analysis
Insertion/Deletion

2-3, and 2-3-4 Trees
Slides modified from
• www.cse.unr.edu/~bebis/CS477/
• http://www.cs.unc.edu/~lin/COMP122-F99/
• www.dsm.fordham.edu/~agw/.../Chapter19-BalancedSearchTrees.ppt 2

Balanced Trees

http://www.cse.unr.edu/%7Ebebis/CS477/
http://www.cs.unc.edu/%7Elin/COMP122-F99/

Binary Search Tree Property

Binary search tree order
property:

If y is in left subtree of x,
then key [y] ≤ key [x]

If y is in right subtree of x,
then key [y] ≥ key [x]

2

3

5

5

7

9

3Red-black trees are binary search trees.

Binary Search Trees - Summary
Operations on binary search trees:

SEARCH O(h)
PREDECESSOR O(h)
SUCCESOR O(h)
MINIMUM O(h)
MAXIMUM O(h)
INSERT O(h)
DELETE O(h)

These operations are fast if the height of the
tree is small – otherwise their performance is
similar to that of a linked list

4

Tree Height
The height h of a binary search tree on n
items can be as high as n-1

However, if it is built by inserting the
elements in random order, then the
expected height is O(lg n).

With red-black trees, we aim to guarantee
that the height is always O(lg n).

5

Red-Black Trees
Balanced binary search trees that
guarantee an O(lgn) running time
Red-black-tree

Binary search tree with an additional binary
attribute for its nodes: color which can be
red or black
Constrains the way nodes can be colored on
any path from the root to a leaf:

Ensures that no path is more than twice as long as
any other path ⇒ the tree is balanced

6

Example: RED-BLACK-TREE

For convenience we use a sentinel NIL[T] to represent all
the null nodes at the leafs

NIL[T] has the same fields as an ordinary node
Color[NIL[T]] = BLACK
The other fields may be set to arbitrary values

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

7

Red-Black Trees
Binary search tree + 1 extra bit per node:
the attribute color, which is either red or
black.
All other attributes of BSTs are inherited:

key, left, right, and p (parent).

All empty trees (leaves) are colored black.
We use a single sentinel, NIL, for all the leaves
of red-black tree T, with color[NIL] = black.
The root’s parent is also NIL[T]. 8

Red-Black-Trees Properties
(**Satisfy the binary search tree property**)

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path
from the root to a leaf

5. For each node, all paths from that node to descendant
leaves contain the same number of black nodes

9

local

global

Black-Height of a Node

Height of a node: the number of edges in the
longest path to a leaf
Black-height of a node x: bh(x) is the number of
black nodes (including NIL) on the path from x to a leaf,
not counting x

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1

10

Important Property of
Red-Black-Trees

A red-black tree with n internal nodes
has height at most 2lg(n + 1)

Need to prove two claims first …

11

Claim 1
Any node x with height h(x) has bh(x) ≥ h(x)/2
Proof

By property 4, at most h/2 red nodes on the path from the
node to a leaf
Hence at least h/2 are black

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1

12

Claim 2
The subtree rooted at any node x contains
at least 2bh(x) - 1 internal nodes

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1

13

Claim 2 (Cont’d)
Proof: By induction on h[x]
Basis: h[x] = 0 ⇒

x is a leaf (NIL[T]) ⇒
bh(x) = 0 ⇒

of internal nodes: 20 - 1 = 0

Inductive Hypothesis: assume it is true for
h[x]=h-1

NIL

x

14

Claim 2 (Cont’d)
Inductive step:

Prove it for h[x]=h
Let bh(x) = b, then any child y of x has:

bh (y) =
bh (y) =

b (if the child is red), or
b - 1 (if the child is black)

26

17 41

30 47

38 50

x

y1 y2
bh = 2

bh = 2

bh = 1

NIL NIL

NIL NIL

NILNIL 15

Claim 2 (Cont’d)
Using inductive hypothesis, the
number of internal nodes for
each child of x is at least:

2bh(x) - 1 - 1
The subtree rooted at x contains
at least:
(2bh(x) - 1 – 1) + (2bh(x) - 1 – 1) + 1 =

2 · (2bh(x) - 1 - 1) + 1 =
2bh(x) - 1 internal nodes

x

l r

h

h-1

bh(l)≥bh(x)-1

bh(r)≥bh(x)-1

16

Height of Red-Black-Trees (Cont’d)
Lemma: A red-black tree with n internal

nodes has height at most 2lg(n + 1).
Proof:

n

Add 1 to both sides and then take logs:
n + 1 ≥ 2b ≥ 2h/2

lg(n + 1) ≥ h/2 ⇒
h ≤ 2 lg(n + 1)

root

l r

height(root) = h
bh(root) = b

number n
of internal
nodes

≥ 2b - 1 ≥ 2h/2 - 1

since b ≥ h/2

17

Operations on RB Trees

All operations can be performed in O(lg n)
time.
The query operations, which don’t modify
the tree, are performed in exactly the same
way as they are in BSTs.
Insertion and Deletion are not
straightforward. Why?

18

Rotations: Local Tree
Rearrangements

y

x

α β

γ

Left-Rotate(T, x)

γ

α

x

y

β

Right-Rotate(T, y)

19

Internal tree rebalancing operations

Rotations
Rotations are the basic tree-restructuring operations
for almost all balanced search trees.
Rotation takes a red-black-tree and a node,
Changes pointers to change the local structure, and
Does not violate the binary-search-tree property.
Left rotation and right rotation are inverses.

y

x

α β

γ

Left-Rotate(T, x)

γ

α

x

y

β

Right-Rotate(T, y)

20

Left Rotation – Pseudocode
Left-Rotate (T, x)
1. y ← right[x] // Set y.
2. right[x] ← left[y] //Turn y’s left subtree into x’s right

subtree.
3. if left[y] ≠ nil[T]
4. then p[left[y]] ← x
5. p[y] ← p[x] // Link x’s parent to y.
6. if p[x] = nil[T]
7. then root[T] ← y
8. else if x = left[p[x]]
9. then left[p[x]] ← y
10. else right[p[x]] ← y
11. left[y] ← x // Put x on y’s left.
12. p[x] ← y

y

x

α β

γ

Left-Rotate(T, x)

γ
α

x

y

β

Right-Rotate(T, y)

21

Rotation

The pseudo-code for Left-Rotate assumes that
right[x] ≠ nil[T], and
root’s parent is nil[T].

Left Rotation on x, makes x the left child of y, and
the left subtree of y into the right subtree of x.
Pseudocode for Right-Rotate is symmetric:
exchange left and right everywhere.
Time: O(1) for both Left-Rotate and Right-Rotate,
since a constant number of pointers are modified.

22

Reminder: Red-Black Properties

1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both its children

are black.

5. For each node, all paths from the node
to descendant leaves contain the same
number of black nodes. 23

Insertion in RB Trees
Insertion must preserve all red-black
properties.
Should an inserted node be colored Red?
Black?
Basic steps:

Use Tree-Insert from BST (slightly modified) to
insert a node x into T.

Procedure RB-Insert(x).
Color the node x red.
Fix the modified tree by re-coloring nodes and
performing rotation to preserve RB tree property.

Procedure RB-Insert-Fixup.
24

Insertion
RB-Insert(T, z)
1. y ← nil[T]
2. x ← root[T]
3. while x ≠ nil[T]
4. do y ← x
5. if key[z] < key[x]
6. then x ← left[x]
7. else x ←

right[x]
8. p[z] ← y
9. if y = nil[T]
10. then root[T] ← z
11. else if key[z] < key[y]
12. then left[y] ← z
13. else right[y] ← z

RB-Insert(T, z) Contd.
14. left[z] ← nil[T]
15. right[z] ← nil[T]
16. color[z] ← RED
17. RB-Insert-Fixup (T, z)

How does it differ from the
Tree-Insert procedure of BSTs?
Which of the RB properties
might be violated?

Fix the violations by calling
RB-Insert-Fixup.

25

Red-Black-Trees Properties
(**Satisfy the binary search tree property**)

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path
from the root to a leaf

5. For each node, all paths from that node to descendant
leaves contain the same number of black nodes

26

local

global

Insertion – Fixup

Problem: we may have one pair of
consecutive reds where we did the
insertion.
Solution: rotate it up the tree and away…
Three cases have to be handled…

27

Insertion – Fixup

RB-Insert-Fixup (T, z)
1. while color[p[z]] = RED
2. do if p[z] = left[p[p[z]]]
3. then y ← right[p[p[z]]]
4. if color[y] = RED
5. then color[p[z]] ← BLACK // Case 1
6. color[y] ← BLACK // Case 1
7. color[p[p[z]]] ← RED // Case 1
8. z ← p[p[z]] // Case 1

28

Insertion – Fixup

RB-Insert-Fixup(T, z) (Contd.)
9. else if z = right[p[z]] // color[y] ≠ RED
10. then z ← p[z] // Case 2
11. LEFT-ROTATE(T, z) // Case 2
12. color[p[z]] ← BLACK // Case 3
13. color[p[p[z]]] ← RED // Case 3
14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]])(same as 10-14
16. with “right” and “left” exchanged)
17. color[root[T]] ← BLACK

29

Correctness

Loop invariant:
At the start of each iteration of the while
loop,

z is red.
If p[z] is the root, then p[z] is black.
There is at most one red-black violation:

Property 2: z is a red root, or
Property 4: z and p[z] are both red.

30

Correctness – Contd.
Initialization: √
Termination: The loop terminates only if p[z] is
black. Hence, property 4 is OK.
The last line ensures property 2 always holds.
Maintenance: We drop out when z is the root
(since then p[z] is the sentinel nil[T], which is
black). When we start the loop body, the only
violation is of property 4.

There are 6 cases, 3 of which are symmetric to the
other 3. We consider cases in which p[z] is a left
child.
Let y be z’s uncle (p[z]’s sibling). 31

Case 1 – Uncle y is Red

p[p[z]] (z’s grandparent) must be black, since z and p[z] are both red
and there are no other violations of property 4.

Make p[z] and y black ⇒ now z and p[z] are not both red. But
property 5 might now be violated.

Make p[p[z]] red ⇒ restores property 5.
The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

C

A D

B
α

β γ

δ ε
z

y
C

A D

B
α

β γ

δ ε

new z

z is a right child here.
Similar steps if z is a left child.

p[z]

p[p[z]]

Color flip!

32

Case 2 – y is Black, z is a Right Child

Left rotate around p[z], p[z] and z switch roles ⇒ now z is
a left child, and both z and p[z] are red.
Takes us immediately to case 3.

C

A

Bα

β γ

δ

z

y

C

B

A

α β

γ

δ

z

y

p[z] p[z]

33

Case 3 – y is Black, z is a Left Child

Make p[z] black and p[p[z]] red.
Then right rotate on p[p[z]]. Ensures property 4 is
maintained.
No longer have 2 reds in a row.
p[z] is now black ⇒ no more iterations.

B

A

α β γ δ

C

B

A

α β

γ

δ y
p[z]

C

z

34

Example Insertion
11

Insert 4

2 14

1 157

85

4

y

11

2 14

1 157

85

4

z

Case 1

y

z and p[z] are both red
z’s uncle y is redz

z and p[z] are both red
z’s uncle y is black
z is a right child

Case 2

11

2

14

1

15

7

8

5

4

z
y Case 3

z and p[z] are red
z’s uncle y is black
z is a left child

112

141

15

7

85

4

z

35

Algorithm Analysis
O(lg n) time to get through RB-Insert up to
the call of RB-Insert-Fixup.
Within RB-Insert-Fixup:

Each iteration takes O(1) time.
Each iteration but the last moves z up 2 levels.
O(lg n) levels ⇒ O(lg n) time.
Thus, insertion in a red-black tree takes O(lg n)
time.
Note: there are at most 2 rotations overall.

36

Animations

Animation:
https://www.youtube.com/watch?v=rcDF8IqTnyI

Live demo:
http://www.cs.usfca.edu/~galles/visualization/RedBlack.
html

Video explanations
http://www.csanimated.com/animation.php?t=Red-
black_tree

37

https://www.youtube.com/watch?v=rcDF8IqTnyI
http://www.cs.usfca.edu/%7Egalles/visualization/RedBlack.html
http://www.csanimated.com/animation.php?t=Red-black_tree

Deletion

Deletion, like insertion, should preserve all
the RB properties.
The properties that may be violated
depends on the color of the deleted node.

Red – OK. Why?
Black?

Steps:
Do regular BST deletion.
Fix any violations of RB properties that may
result. 38

Deletion

RB-Delete(T, z)
1. if left[z] = nil[T] or right[z] = nil[T]
2. then y ← z
3. else y ← TREE-SUCCESSOR(z)
4. if left[y] = nil[T]
5. then x ← left[y]
6. else x ← right[y]
7. p[x] ← p[y] // Do this, even if x is nil[T]

39

y is the node we really delete
x is the node that moves into y’s original position

Deletion
RB-Delete (T, z) (Contd.)
8. if p[y] = nil[T]
9. then root[T] ← x
10. else if y = left[p[y]]
11. then left[p[y]] ← x
12. else right[p[y]] ← x
13. if y = z
14. then key[z] ← key[y]
15. copy y’s satellite data into z
16. if color[y] = BLACK
17. then RB-Delete-Fixup(T, x)
18. return y

The node passed to
the fixup routine is
the lone child of the
spliced up node, or
the sentinel.

40

Red-Black-Trees Properties
(**Satisfy the binary search tree property**)

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path
from the root to a leaf

5. For each node, all paths from that node to descendant
leaves contain the same number of black nodes

41

local

global

RB Properties Violation

If y is black, we could have violations of
red-black properties:

Prop. 1. OK.
Prop. 2. If y is the root and x is red, then the
root has become red.
Prop. 3. OK.
Prop. 4. Violation if p[y] and x are both red.
Prop. 5. Any path containing y now has 1
fewer black node.

42

RB Properties Violation
Prop. 5. Any path containing y now has 1 fewer
black node.

Correct by giving x an “extra black.”
Add 1 to count of black nodes on paths containing x.
Now property 5 is OK, but property 1 is not.
x is either doubly black (if color[x] = BLACK) or red
& black (if color[x] = RED).
The attribute color[x] is still either RED or BLACK.
No new values for color attribute.
In other words, the extra blackness on a node is by
virtue of x pointing to the node.

Remove the violations by calling RB-Delete-
Fixup. 43

Deletion – Fixup

RB-Delete-Fixup(T, x)
1. while x ≠ root[T] and color[x] = BLACK
2. do if x = left[p[x]]
3. then w ← right[p[x]]
4. if color[w] = RED
5. then color[w] ← BLACK // Case 1
6. color[p[x]] ← RED // Case 1
7. LEFT-ROTATE(T, p[x]) // Case 1
8. w ← right[p[x]] // Case 1

44

RB-Delete-Fixup(T, x) (Contd.)
/* x is still left[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] = BLACK
10. then color[w] ← RED // Case 2
11. x ← p[x] // Case 2
12. else if color[right[w]] = BLACK
13. then color[left[w]] ← BLACK // Case 3
14. color[w] ← RED // Case 3
15. RIGHT-ROTATE(T,w) // Case 3
16. w ← right[p[x]] // Case 3
17. color[w] ← color[p[x]] // Case 4
18. color[p[x]] ← BLACK // Case 4
19. color[right[w]] ← BLACK // Case 4
20. LEFT-ROTATE(T, p[x]) // Case 4
21. x ← root[T] // Case 4
22. else (same as then clause with “right” and “left”

exchanged)
23. color[x] ← BLACK

45

Deletion – Fixup
Idea: Move the extra black up the tree until x points
to a red & black node ⇒ turn it into a black node,
x points to the root ⇒ just remove the extra black,
or
We can do certain rotations and re-colorings to
finish.
Within the while loop:

x always points to a non-root doubly black node.
w is x’s sibling.
w cannot be nil[T], since that would violate property 5 at
p[x].

8 cases in all, 4 of which are symmetric to the
other.

46

Case 1 – w is Red

w must have black children.
Make w black and p[x] red (because w is red p[x] couldn’t
have been red).
Then left rotate on p[x].
New sibling of x was a child of w before rotation ⇒ must
be black.
Go immediately to case 2, 3, or 4.

B

A D

C E
α β

γ δ ε ζ

B

A
α β γ δ

ε ζ

x w
D

C

E

x new w

p[x]

47

Case 2 – w is Black, Both w’s
Children are Black

Take 1 black off x (⇒ singly black) and off w (⇒ red).
Move that black to p[x].
Do the next iteration with p[x] as the new x.
If entered this case from case 1, then p[x] was red ⇒ new
x is red & black ⇒ color attribute of new x is RED ⇒ loop
terminates. Then new x is made black in the last line.

B

A D

C E
α β

γ δ ε ζ

x w
B

A D

C E
α β

γ δ ε ζ

new xc c
p[x]

48

Case 3 – w is Black, w’s Left Child
is Red, w’s Right Child is Black

Make w red and w’s left child black.
Then right rotate on w.
New sibling w of x is black with a red right child ⇒ case 4.

B

A D

C E
α β

γ δ ε ζ

x w
B

A C

Dα β
γ

δ

ε ζ

c c

E

new wx

49

Case 4 – w is Black, w’s Right Child is
Red

Make w be p[x]’s color (c).
Make p[x] black and w’s right child black.
Then left rotate on p[x].
Remove the extra black on x (⇒ x is now singly black)
without violating any red-black properties.
All done. Setting x to root causes the loop to terminate.

B

A D

C E
α β

γ δ ε ζ

B

A
α β γ δ

ε ζ

x w
D

C

E

x

c

c’

50

Analysis

O(lg n) time to get through RB-Delete up
to the call of RB-Delete-Fixup.
Within RB-Delete-Fixup:

Case 2 is the only case in which more
iterations occur.

x moves up 1 level.
Hence, O(lg n) iterations.

Each of cases 1, 3, and 4 has 1 rotation ⇒ ≤
3 rotations in all.
Hence, O(lg n) time.

51

Animations

Animation:
https://www.youtube.com/watch?v=rcDF8IqTnyI

Live demo:
http://www.cs.usfca.edu/~galles/visualization/RedBlack.
html

Video explanations
http://www.csanimated.com/animation.php?t=Red-
black_tree

52

https://www.youtube.com/watch?v=rcDF8IqTnyI
http://www.cs.usfca.edu/%7Egalles/visualization/RedBlack.html
http://www.csanimated.com/animation.php?t=Red-black_tree

Hysteresis : or the Value of
Laziness

The red nodes give us some slack – we
don’t have to keep the tree perfectly
balanced.
The colors make the analysis and code
much easier than some other types of
balanced trees.
Still, these aren’t free – balancing costs
some time on insertion and deletion.

53

54

2-3 Trees
• A 2-3 tree is not a binary tree
• A 2-3 tree is always fully balanced, so

height is O(lg n)

55

2-3 Trees
Placing data items in nodes of a 2-3 tree

A 2-node (has two children) must contain single
data item greater than left child’s item(s) and
less than right child’s item(s)
A 3-node (has three children) must contain two
data items, S and L , such that

S is greater than left child’s item(s) and less than
middle child’s item(s);
L is greater than middle child’s item(s) and less than
right child’s item(s).

Leaf may contain either one or two data items.

2-3 Trees

57

2-3 Tree Example

58

Traversing a 2-3 Tree

Traverse 2-3 tree
in sorted order
by performing
analogue of
inorder traversal
on binary tree:

Searching a 2-3 Tree

Retrieval operation for 2-3 tree similar to
retrieval operation for binary search tree

Inserting Data into a 2-3 Tree

61

Inserting Data into a 2-3 Tree

62

Inserting Data into a 2-3 Tree

63

Inserting Data into a 2-3 Tree

64

Inserting Data into a 2-3 Tree

65

Inserting Data into a 2-3 Tree

66

Deleting Data from a 2-3 Tree

67

Deleting Data from a 2-3 Tree

68

Deleting Data from a 2-3 Tree

69

2-3-4 Trees

70

2-3-4 Trees

71

Red-Black Trees = 2-3-4 Trees

72

Red-Black Trees

73

AVL Trees
Named for inventors, Adel’son-Vel’skii and
Landis
A balanced binary search tree

any node in an AVL tree has left and right
subtrees whose heights differ by more than 1

Has guaranteed O(lg n) height
Not as efficient as red-black trees

	CS161:�Design and Analysis of Algorithms�����Lecture 10�Leonidas Guibas
	Outline
	Binary Search Tree Property
	Binary Search Trees - Summary
	Tree Height
	Red-Black Trees
	Example: RED-BLACK-TREE
	Red-Black Trees
	Red-Black-Trees Properties
	Black-Height of a Node
	Important Property of �Red-Black-Trees
	Claim 1
	Claim 2
	Claim 2 (Cont’d)
	Claim 2 (Cont’d)
	Claim 2 (Cont’d)
	Height of Red-Black-Trees (Cont’d)
	Operations on RB Trees
	Rotations: Local Tree Rearrangements
	Rotations
	Left Rotation – Pseudocode
	Rotation
	Reminder: Red-Black Properties
	Insertion in RB Trees
	Insertion
	Red-Black-Trees Properties
	Insertion – Fixup
	Insertion – Fixup
	Insertion – Fixup
	Correctness
	Correctness – Contd.
	Case 1 – Uncle y is Red
	Case 2 – y is Black, z is a Right Child
	Case 3 – y is Black, z is a Left Child
	Example Insertion
	Algorithm Analysis
	Animations
	Deletion
	Deletion
	Deletion
	Red-Black-Trees Properties
	RB Properties Violation
	RB Properties Violation
	Deletion – Fixup
	Slide Number 45
	Deletion – Fixup
	Case 1 – w is Red
	Case 2 – w is Black, Both w’s Children are Black
	Case 3 – w is Black, w’s Left Child is Red, w’s Right Child is Black
	Case 4 – w is Black, w’s Right Child is Red
	Analysis
	Animations
	Hysteresis : or the Value of Laziness
	Slide Number 54
	2-3 Trees
	2-3 Trees
	2-3 Trees
	2-3 Tree Example
	Traversing a 2-3 Tree
	Searching a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Inserting Data into a 2-3 Tree
	Deleting Data from a 2-3 Tree
	Deleting Data from a 2-3 Tree
	Deleting Data from a 2-3 Tree
	2-3-4 Trees
	2-3-4 Trees
	Red-Black Trees = 2-3-4 Trees
	Red-Black Trees
	AVL Trees

