
CS161:
Design and Analysis of

Algorithms

Lecture 12
Leonidas Guibas

1

Outline

Review of last lecture: Dynamic
Programming

Today: Augmented data structures
dynamic order statistics
Interval trees

Amortized analysis
the accounting method
the potential method

Slides modified from
• http://www.cs.virginia.edu/~luebke/cs332/
• http://profmsaeed.org/wp-

content/uploads/2009/.../AOAAmortizedAnal
ysis.ppt

2

http://www.cs.virginia.edu/%7Eluebke/cs332/
http://profmsaeed.org/wp-content/uploads/2009/.../AOAAmortizedAnalysis.ppt

Augmenting Data Structures

3

Dynamic Order Statistics
We have covered algorithms for finding the i-th
element of a static unordered set in O(n) time
Of course, if a set is ordered, we can find the i-th
element in O(1) time

OS-Trees: a structure to support finding the i-th
element of a dynamic set in O(lg n) time

Support standard dynamic set operations (Insert(),
Delete(), Min(), Max(), Succ(), Pred())
Also support these order statistic operations:
void OS-Select(root, i);
int OS-Rank(x);

Order Statistics Trees
OS Trees: augment red-black trees

Associate a new size field with each node in
the tree
x->size records the size of subtree rooted
at x, including x itself:

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

Selection in OS Trees
M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

How can we use this property
to select the i-th element of the set?

OS-Select

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

compute rank r of the root

go left

go right

OS-Select Example

Example: show OS-Select(root, 5):

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

i = 5
r = 6

OS-Select Example

Example: show OS-Select(root, 5):

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

i = 5
r = 6

i = 5
r = 2

OS-Select Example

Example: show OS-Select(root, 5):

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

i = 5
r = 6

i = 5
r = 2

i = 3
r = 2

OS-Select Example

Example: show OS-Select(root, 5):

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

i = 5
r = 6

i = 5
r = 2

i = 3
r = 2

i = 1
r = 1

OS-Select Example

Example: show OS-Select(root, 5):

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

i = 5
r = 6

i = 5
r = 2

i = 3
r = 2

i = 1
r = 1

OS-Select Example

Example: show OS-Select(root, 5):

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

Note: use a sentinel NIL element
at the leaves with size = 0
to simplify code, avoid testing for NULL

OS-Select

OS-Select(x, i)
{

r = x->left->size + 1;
if (i == r)

return x;
else if (i < r)

return OS-Select(x->left, i);
else

return OS-Select(x->right, i-r);
}

What is the running time? O(log n)

Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

What is the rank of this element?

Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

Of this one? Why?

Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

Of the root? What’s the pattern here?

Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

What about the rank of this element?

Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

This one? What’s the pattern here?

OS-Rank
OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

What is the running time?

Idea: rank of right child x is one
more than its parent’s rank, plus
the size of x’s left subtree

O(log n)

Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

Example 1:
find rank of element with key H

y
r = 1

Determining The
Rank of an Element

OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

Example 1:
find rank of element with key H M

8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1 r = 1

y
r = 1+1+1 = 3

Determining The
Rank of an Element

OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

Example 1:
find rank of element with key H M

8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1 r = 1

r = 3

y
r = 3+1+1 = 5

Determining The
Rank of an Element

OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

Example 1:
find rank of element with key H M

8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1 r = 1

r = 3

r = 5

y
r = 5

Review: Determining The
Rank of an Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

Example 2:
find rank of element with key P

y
r = 1

Review: Determining The
Rank of an Element

OS-Rank(T, x)
{

r = x->left->size + 1;
y = x;
while (y != T->root)

if (y == y->p->right)
r = r + y->p->left->size + 1;

y = y->p;
return r;

}

Example 2:
find rank of element with key P

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

r = 1

y
r = 1 + 5 + 1 = 7

OS-Trees: Maintaining Sizes

We have shown that, with subtree sizes,
order statistic operations can be done in
O(log n) time
Next step: maintain sizes during Insert()
and Delete() operations

How should we adjust the size fields during
insertion on a plain binary search tree?

OS-Trees: Maintaining Sizes
We have shown that, with subtree sizes,
order statistic operations can be done in
O(log n) time
Next step: maintain sizes during Insert()
and Delete() operations

How would we adjust the size fields during
insertion on a plain binary search tree?
A: in insertion, increment sizes of nodes
traversed during unsuccessful search

OS-Trees: Maintaining Sizes
We have shown that, with subtree sizes,
order statistic operations can be done in
O(log n) time
Next step: maintain sizes during Insert()
and Delete() operations

How would we adjust the size fields during
insertion on a plain binary search tree?
A: in insertion, increment sizes of nodes
traversed during unsuccessful search
Why won’t this work on red-black trees?

Maintaining Sizes Through
Rotations

Salient point: rotation invalidates only x and y
Can recalculate their sizes in constant time

Why?

y
19

x
11

x
19

y
12

rightRotate(y)

leftRotate(x)

6 4

7 6

4 7

Augmenting Data Structures:
Methodology

Choose underlying data structure
E.g., red-black trees

Determine additional information to
maintain

E.g., subtree sizes
Verify that information can be maintained
for operations that modify the structure

E.g., Insert(), Delete() (don’t forget rotations!)
Develop new operations

E.g., OS-Rank(), OS-Select()

Interval Trees

The problem: maintain a set of intervals
E.g., time intervals for a scheduling program:

107

115

84 1815 2321

17 19

i = [7,10]; i →low = 7; i→high = 10

Interval Trees
The problem: maintain a set of intervals

E.g., time intervals for a scheduling program:

Query: find an interval in the set that overlaps a
given query interval (conflict detection)

[14,16] → [15,18]
[16,19] → [15,18] or [17,19]
[12,14] → NULL

107

115

84 1815 2321

17 19

i = [7,10]; i →low = 7; i→high = 10

Interval Trees

Following the methodology:
Pick underlying data structure
Decide what additional information to store
Figure out how to maintain the information
Develop the desired new operations

Interval Trees

Following the methodology:
Pick underlying data structure

Red-black trees will store intervals, keyed on
i→low (the left endpoint)

Decide what additional information to store
Figure out how to maintain the information
Develop the desired new operations

Interval Trees

Following the methodology:
Pick underlying data structure

Red-black trees will store intervals, keyed on
i→low (the left endpoint)

Decide what additional information to store
We will store max, the maximum right endpoint in
the subtree rooted at each node

Figure out how to maintain the information
Develop the desired new operations

Interval Trees

[17,19]

[5,11] [21,23]

[4,8] [15,18]

[7,10]

int
max

What are the max fields?









→→
→→

→
=→

max
maxmaxmax

rightx
leftx

highx
x

Interval Trees

[17,19]
23

[5,11]
18

[21,23]
23

[4,8]
8

[15,18]
18

[7,10]
10

int
max

Note that:

Interval Trees

Following the methodology:
Pick underlying data structure

Red-black trees will store intervals, keyed on i→low
(the left endpoint)

Decide what additional information to store
Store the maximum right endpoint in the subtree
rooted at i

Figure out how to maintain the information
How would we maintain max field for a BST?
What’s different?

Develop the desired new operations

Interval Trees

What are the new max values for the
subtrees below x and y?

[11,35]
35

[6,20]
20

[6,20]
???

[11,35]
???

rightRotate(y)

leftRotate(x)

…
14

…
19

…
30

…
14

…
19

…
30

x

y
x

y

Interval Trees

What are the new max values for the
subtrees below x and y?
A: Unchanged
What are the new max values for x and y?

[11,35]
35

[6,20]
20

[6,20]
???

[11,35]
???

rightRotate(y)

leftRotate(x)

…
14

…
19

…
30

…
14

…
19

…
30

Interval Trees

What are the new max values for the subtrees
below x and y?
A: Unchanged
What are the new max values for x and y?
A: root value unchanged, recompute the other

[11,35]
35

[6,20]
20

[6,20]
35

[11,35]
35

rightRotate(y)

leftRotate(x)

…
14

…
19

…
30

…
14

…
19

…
30

Interval Trees
Following the methodology:

Pick underlying data structure
Red-black trees will store intervals, keyed on
i→low (the left endpoint)

Decide what additional information to store
Store the maximum right endpoint in the subtree
rooted at i

Figure out how to maintain the information
Insert: update max on way down, during rotations
Delete: similar

Develop the desired new operations

Searching Interval Trees
IntervalSearch(T, i)
{

x = T->root;
while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)
x = x->left;

else
x = x->right;

return x
}

What is the running time?
O(log n)

IntervalSearch() Example

Example1: search for interval
overlapping [20,22]

[17,19]
23

[5,11]
18

[21,23]
23

[4,8]
8

[15,18]
18

[7,10]
10

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

IntervalSearch() Example
Example2: search for interval
overlapping [16,20]

[17,19]
23

[5,11]
18

[21,23]
23

[4,8]
8

[15,18]
18

[7,10]
10

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

Correctness of IntervalSearch()

Key idea: need to check only one of a
node’s two children

Case 1: search goes right
Show that ∃ overlap in right subtree, or no overlap
at all

Case 2: search goes left
Show that ∃ overlap in left subtree, or no overlap
at all

Correctness of IntervalSearch()

Case 1: if search goes right, ∃ overlap in the
right subtree or no overlap in either subtree

If ∃ overlap in right subtree, we’re done
Otherwise:

x→left = NULL, or x → left → max < x → low (Why?)
Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;

Correctness of IntervalSearch()
Case 2: if search goes left, ∃ overlap in the left
subtree or no overlap in either subtree

If ∃ overlap in left subtree, we’re done
Otherwise:

i →low ≤ x →left →max, by branch condition
x →left →max = y →high for some y in left subtree
Since i and y don’t overlap and i →low ≤ y →high,
i →high < y →low
Since tree is sorted by low’s, i →high < any low in right
subtree
Thus, no overlap in right subtree

while (x != NULL && !overlap(i, x->interval))
if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;
else

x = x->right;
return x;

Amortized Analysis

50

Amortized Analysis

Key point: The time required to perform a
sequence of data structure operations is
averaged over all operations performed
Amortized analysis can be used to show
that

The average cost of an operation is small
If one averages over a sequence of operations

even though a single operation might be
expensive

Amortized Analysis vs Average
Case Analysis

Amortized analysis does not use any
probabilistic reasoning
Amortized analysis guarantees
the average performance of each
operation in the worst case
but now we average over a sequence of

operations

Amortized Analysis

Methods of Amortized Analysis

 Accounting Method: we overcharge
some operations early and use them
to as prepaid charge later.

 Aggregate Method: we determine an
upper bound T(n) on the total sequence
of n operations. The cost of each will
then be T(n)/n.

 Potential Method: we maintain credit
as potential energy associated with
the data structure as a whole.

Amortized Analysis

1. Aggregate Method

Show that for all n, a sequence of n operations take
worst-case time T(n) in total

In the worst case, the average cost, or amortized cost ,
per operation is T(n)/n.

The amortized cost applies to each operation, even
when there are several types of operations in the
sequence.

Amortized Analysis

3 ops:

Push(S,x) Pop(S) Multi-
pop(S,k)

Worst-case
cost: 1 1

min(|S|,k)
[= O(n)]

Amortized cost: O(1) per operation

Aggregate Analysis: Stack Example

Amortized Analysis

Sequence of n push, pop, Multipop operations
Worst-case cost of Multipop is O(n)
Have n operations
Therefore, worst-case cost of sequence is O(n2)

Observations
Each object can be popped only once per time that it’s

pushed
Have at most n pushes => at most n pops, including

those in Multipop
Therefore total cost = O(n)
Average over n operations => O(1) per operation on

average

Notice that no probability is involved

……. Aggregate Analysis: Stack Example

Amortized Analysis

2. Accounting Method

Charge i-th operation a fictitious amortized cost ĉi,
where $1 pays for 1 unit of work (i.e., time).
Assign different charges (amortized costs) to different

operations
 Some are charged more than actual cost
 Some are charged less

This fee is consumed to perform the operation.
Any amount not immediately consumed is “stored in
the bank” for use by subsequent operations.
The bank balance (the credit) must not go negative!

We must ensure that
for all n.

Thus, the total amortized costs provide an upper bound
on the total true costs.

Amortized Analysis

3 ops:

Push(S,x) Pop(S) Multi-pop(S,k)

•Assigned
cost: 2 0 0

•Actual cost: 1 1 min(|S|,k)

Push(S,x) pays for possible later pop of x.

….. Accounting Method: Stack Example

Amortized Analysis

….. Accounting Method: Stack Example

When pushing an object, pay $2

$1 pays for the push
$1 is prepayment for it being popped by either pop

or Multipop
Since each object has $1, which is credit, the

credit can never go negative
Therefore, total amortized cost = O(n), is an upper

bound on total actual cost

Amortized Analysis

….. Accounting Method: k-bit Binary Counter

k-bit Binary Counter: A[0..k−1]

INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0 ⊳ reset a bit (carry propagation)
4. i ← i + 1
5. if i < length[A]
6. then A[i] ← 1 ⊳ set a bit

∑ ⋅= −
=

1
0 2][k

i
iiAx

Introduction

Amortized Analysis

Consider a sequence of n increments. The
worst-case time to execute one increment is
Θ(k). Therefore, the worst-case time for n
increments is n ·Θ(k) = Θ(n⋅ k).

WRONG! In fact, the worst-case cost for n
increments is only Θ(n) ≪ Θ(n⋅ k).
Let’s see why. Note: You’d be correct

if you’d said O(n⋅ k).
But, it’s an overestimate.

….. Accounting Method: k-bit Binary Counter

Amortized Analysis

Ctr A[4] A[3] A[2] A[1] A[0] Cost

0 0 0 0 0 0 0
1 0 0 0 0 1 1
2 0 0 0 1 0 3
3 0 0 0 1 1 4
4 0 0 1 0 0 7
5 0 0 1 0 1 8
6 0 0 1 1 0 10
7 0 0 1 1 1 11
8 0 1 0 0 0 15
9 0 1 0 0 1 16
10 0 1 0 1 0 18
11 0 1 0 1 1 19

A[0] flipped every op n

A[1] flipped every 2 ops n/2

A[2] flipped every 4 ops n/22

A[3] flipped every 8 ops n/23

… … … … …

A[i] flipped every 2i ops n/2i

Total cost of n operations

….. Accounting Method: k-bit Binary Counter

Amortized Analysis

Cost of n increments

Thus, the average cost of each increment operation is
Θ(n)/n = Θ(1).

….. Accounting Method: k-bit Binary Counter

Amortized Analysis

Example:

Charge an amortized cost of $2 every time a bit is set from 0 to 1

• $1 pays for the actual bit setting.
• $1 is stored for later re-setting (from 1 to 0).

At any point, every 1 bit in the counter has $1 on it… that pays for
resetting it. (reset is “free”)

0 0 0 1$1 0 1$1 0

0 0 0 1$1 0 1$1 1$1

0 0 0 1$1 1$1 0 0

Cost = $2

Cost = $2

….. Accounting Method: k-bit Binary Counter

Note that in the accounting method we bank credits with individual data items

Amortized Analysis

When Incrementing,
Amortized cost for line 3 = $0
Amortized cost for line 6 = $2

Amortized cost for INCREMENT(A) = $2
Amortized cost for n INCREMENT(A) = $2n =O(n)

INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0 ⊳ reset a bit
4. i ← i + 1
5. if i < length[A]
6. then A[i] ← 1 ⊳ set a bit

….. Accounting Method: k-bit Binary Counter

Amortized Analysis

3. Potential Method

IDEA: View the bank account as the
potential energy (as in physics) of
the dynamic set.

FRAMEWORK:
Start with an initial data structure D0.
Operation i transforms Di–1 to Di.
The cost of operation i is ci.
Define a potential function Φ : {Di} → R,
such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i.
The amortized cost ĉi with respect to Φ is
defined to be ĉi = ci + Φ(Di) – Φ(Di–1).

Amortized Analysis

Like the accounting method, but think of the
credit as potential stored with the entire data
structure.
 Accounting method stores credit with

specific objects while potential method
stores potential in the data structure as a
whole.
 Can release potential to pay for future

operations
Most flexible of the amortized analysis
methods.

….. Potential Method

Amortized Analysis

ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

 If ∆Φi > 0, then ĉi > ci. Operation i
stores work in the data structure for later
use.
 If ∆Φi < 0, then ĉi < ci. The data

structure delivers up stored work to help
pay for operation i.

….. Potential Method

Amortized Analysis

The total amortized cost of n operations is

The RHS telescopes to give:

….. Potential Method

)()(0
1

DDc n

n

i
i Φ−Φ+=∑

=

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

∑
=

≥
n

i
ic

1
since Φ(Dn) ≥ 0 and Φ(D0) = 0.

The Potential Method

If we can ensure that φ (Di) ≥ φ (D0) then

the total amortized cost is an upper bound on the

total actual cost

However, φ (Dn) ≥ φ (D0) should hold for all possible n
since, in practice, we do not always know n in advance

Hence, if we require that φ (Di) ≥ φ (D0), for all i, then
we ensure that we pay in advance (as in the accounting method)

1

ˆ
n

i
i

c
=
∑

Amortized Analysis

….. Potential Method: Stack Example

Define: φ(Di) = # items in stack Thus, φ(D0)=0.

Plug in for operations to get amortized costs: (j = actual
stack size)
Push: ĉi = ci + φ(Di) - φ(Di-1)

= 1 + j - (j-1)
= 2

Pop: ĉi = ci + φ(Di) - φ(Di-1)
= 1 + (j-1) - j
= 0

Multi-pop: ĉi = ci + φ(Di) - φ(Di-1)
= k’ + (j-k’) - j k’=min(|S|,k)
= 0

Amortized Analysis

….. Potential Method: k-bit Binary Counter
Define the potential of the counter after the ith operation
by Φ(Di) = bi, the number of 1’s in the counter after the ith
operation.

Note:
• Φ(D0) = 0,
• Φ(Di) ≥ 0 for all i.

Example:

0 0 0 1 0 1 0
0 0 0 1$1 0 1$1 0 Accounting method)(

Amortized Analysis

….. Potential Method

The amortized cost of the i th INCREMENT is

ĉi = ci + Φ(Di) – Φ(Di–1)
= (ti + 1) + (1 − ti)
= 2

Assume ith INCREMENT resets ti bits (in line 3).
Actual cost ci = (ti + 1)
Number of 1’s after ith operation: bi = bi–1 – ti + 1

Therefore, n INCREMENTs cost Θ(n) in the worst case.

Amortized Analysis

Takes some experience to properly
define amortized costs

It is very common in data structures that
an individual operation can be expensive,
but not all operations in a sequence can

74

	CS161:�Design and Analysis of Algorithms�����Lecture 12�Leonidas Guibas
	Outline
	Augmenting Data Structures
	Dynamic Order Statistics
	Order Statistics Trees
	Selection in OS Trees
	OS-Select
	OS-Select Example
	Slide Number 9
	OS-Select Example
	OS-Select Example
	OS-Select Example
	OS-Select Example
	OS-Select
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	OS-Rank
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	Determining The �Rank of an Element
	Review: Determining The �Rank of an Element
	Review: Determining The �Rank of an Element
	OS-Trees: Maintaining Sizes
	OS-Trees: Maintaining Sizes
	OS-Trees: Maintaining Sizes
	Maintaining Sizes Through Rotations
	Augmenting Data Structures: Methodology
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Interval Trees
	Searching Interval Trees
	IntervalSearch() Example
	IntervalSearch() Example
	Correctness of IntervalSearch()
	Correctness of IntervalSearch()
	Correctness of IntervalSearch()
	Amortized Analysis
	Amortized Analysis
	Amortized Analysis vs Average Case Analysis
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Amortized Analysis

