CS161:
 Design and Analysis of Algorithms

Lecture 14 Leonidas Guibas

Outline

- Last lecture: Graph traversal - breadth and depth first search
*Today: Minimum spanning trees (MSTs)
- Kruskal's algorithm
- Prim's algorithm
-Boruvka's algorithm

Representation of Graphs

- Two standard ways
-Adjacency Lists

-Adjacency Matrix

Graph-Searching Algorithms

- Searching a graph:
- Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
- Breadth-first Search (BFS).
- Depth-first Search (DFS).

Breadth-First Search (BFS)

- Expands the frontier between discovered and undiscovered vertices uniformly across the length of the frontier by using a queue.
* A vertex is "discovered" the first time it is encountered during the search.
* A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
- Whijite - Undiscovered.
- Gray - Discovered but not finished.
- Black - Finished.

Depth-First Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
* "Search as deep as possible first" - using a stack.
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Graph Search Algorithms

- BFS, DFS often used for their "byproducts" - certain node annotations
- BFS provides shortest path distances to the source, and the BFS tree is a shortest path tree
- BFS selects a set of graph edges with useful properties

DFS Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
* Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depthfirst trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Topological Sort

- Topological sort of a DAG (directed acyclic graph):
- Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \in G$
- Real-world example: getting dressed

Spanning Trees

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.

Graph A
Some Spanning Trees from Graph A

or

Complete Graph

All 16 of its Spanning Trees

Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of minimum cost for that graph.

Complete Graph

Minimum Spanning Tree

The Minimum Spanning Tree for a given graph is not unique.

Minimum Spanning Trees

- Spanning Tree
- A tree.(i.e., connected, acyclic graph) which contains all the vertices of the graph
- Minimum Spanning Tree
- Spanning tree with the minimum sum of edge weights

- Spanning forest
- If a graph is not connected, then there is a spanning tree for each connected component of the graph

Applications of MSTs

- Find the least expensive way to connect a set of cities, terminals, computers, etc.

Problem: Laying Telephone Wire

Wiring: Naive Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Another Example

Problem

- A town has a set of houses and a set of roads
- A road connects two and only two houses

- A road connecting houses u and v has a repair cost w(u, v)
Goal: Repair enough (and no more) roads so that:

1. Everyone stays connected
i.e., can reach every house from all other houses
2. Total repair cost is minimum

Minimum Spanning Trees

- A connected, undirected graph:
- Vertices = houses, Edges = roads
- A weight $w(u, v)$ on each edge $(u, v) \in E$

Find $T \subseteq E$ such that:

1. T connects all vertices
2. $w(T)=\sum_{(u, v) \in T} w(u, v)$ is minimized

Growing a MST - Generic Approach

- Grow a set A of edges from G (initially empty)
- Incrementally add edges to A such that they belong
to a MST

Idea: add only "safe" edges

- An edge (u, v) is safe for A if and only if $A \cup\{(u, v)\}$ is also a subset of some MST

Greedy MST Algorithms

- Greedy algorithms
*iteratively make "myopic" decisions - aimed at locally optimal choice
-but somehow everything works out to yield the global optimum at the end - because, as we grow the local solution, we are always consistent with some global solution
- While growing a partial MST, an edge not currently in the tree is safe, if it can be added while still being part of some MST

Generic MST algorithm

1. $\mathrm{A} \leftarrow \varnothing$
2. while A is not a spanning tree
3. do find an edge (u, v) that is safe for A
4. $A \leftarrow A \cup\{(u, v)\}$
5. return A

Key: how do we find safe edges?

Finding Safe Edges

- Let's look at edge (h, g) - Is it safe for A initially?
- Later on:

- Let $\mathrm{S} \subset \mathrm{V}$ be any set of vertices that includes h but not g (so that g is in $V-S$)
- In any MST, there has to be one edge (at least) that connects S with $V-S$
- Why not choose the edge with minimum weight (h, g) ?

Definitions

- A cut (S, V - S)
 is a partition of vertices into disjoint sets S and $V-S$
- An edge crosses the cut
($\mathrm{S}, \mathrm{V}-\mathrm{S}$) if one endpoint is in S
and the other in $\mathrm{V}-\mathrm{S}$

Definitions (cont'd)

- A cut respects a set A of edges \Leftrightarrow no edge st in A crosses the cut

- An edge is a light edge
crossing a cut \Leftrightarrow its weight is minimum over all edges crossing the cut
*Note that, for a given cut, there can be multiple light edges crossing it

Theorem

- Let A be a subset of some MST (i.e., T), (S, V - S) be a cut that respects A, and (u, v) be a light edge crossing $(S, V-S)$. Then (u, v) is safe for A.

Proof:

- Let T be an MST that includes A
- edges in A are shaded
- Case1: If T includes (u,v), then it would be safe for A
- Case2: Suppose T does not include the edge (u, v)
- Idea: construct another MST T' that includes $A \cup\{(u, v)\}$

Theorem - Proof

- T contains a unique path p between u and v
- Path p must cross the
cut (S, V - S) at least
once: let (x, y) be that edge
- Let's remove (x, y) \Rightarrow break T into two components.

- Adding (u, v) reconnects the components

$$
\mathrm{T}^{\prime}=\mathrm{T}-\{(\mathrm{x}, \mathrm{y})\} \cup\{(\mathrm{u}, \mathrm{v})\}
$$

Theorem - Proof (cont.)

$T^{\prime}=T-\{(x, y)\} \cup\{(u, v)\}$
Have to show that T^{\prime} is an MST:

- (u, v) is a light edge

$$
\Rightarrow w(u, v) \leq w(x, y)
$$

- $w\left(T^{\prime}\right)=w(T)-w(x, y)+w(u, v)$

$$
\leq w(T)
$$

- Since T is a spanning tree $w(T) \leq w\left(T^{\prime}\right) \Rightarrow T^{\prime}$ must be an MST as well

Theorem - Proof (cont.)

Need to show that (u, v) is safe for A :
i.e., (u, v) can be a part of an MST

- $\mathrm{A} \subseteq \mathrm{T}$ and $(x, y) \notin \mathrm{T} \Rightarrow$
$(x, y) \notin A \Rightarrow A \subseteq T^{\prime}$
- $A \cup\{(u, v)\} \subseteq T^{\prime}$
- Since T' is an MST
$\Rightarrow(u, v)$ is safe for A

Prim's Algorithm

- The edges in set A always form a single tree
- Start from an arbitrary "root": $\mathrm{V}_{\mathrm{A}}=\{\mathrm{a}\}$
- At each step:
- Find a light edge crossing $\left(\mathrm{V}_{\mathrm{A}}, \mathrm{V}-\mathrm{V}_{\mathrm{A}}\right)$
- Add this edge to A
- Repeat until the tree spans all vertices

Greedy approach

How to Find Light Edges Quickly?

Use a priority queue Q :

- Contains vertices not yet included in the tree, i.e., $\left(\mathrm{V}-\mathrm{V}_{\mathrm{A}}\right)$ - $V_{A}=\{a\}, Q=\{b, c, d, e, f, g, h, i\}$

- We associate a key with each vertex v:
$\operatorname{key}[v]=$ minimum weight of any edge (u, v) connecting v to V_{A}
$\operatorname{Key[a]}=\min \left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$

How to Find Light Edges Quickly? (cont.)

- After adding a new node to V_{A} we update the weights of all the nodes adjacent to it
e.g., after adding a to the tree, $k[b]=4$ and $k[h]=8$
- Key of v is ∞ if v is not adjacent to any vertices in V_{A}

Example

key $[\mathrm{b}]=4 \quad \pi[\mathrm{~b}]=\mathrm{a}$
key $[\mathrm{h}]=8 \quad \pi[\mathrm{~h}]=\mathrm{a}$
$4 \infty \infty \infty \infty \infty$
$Q=\{b, c, d, e, f, g, h, i\} V_{A}=\{a\}$
Extract-MIN(Q) $\Rightarrow \mathrm{b}$

Example

key $[c]=8 \quad \pi[c]=b$
key $[\mathrm{h}]=8 \quad \pi[\mathrm{~h}]=\mathrm{a}$ - unchanged
$8 \infty \infty \infty \infty$
$Q=\{c, d, e, f, g, h, i\} V_{A}=\{a, b\}$
Extract-MIN(Q) $\Rightarrow \mathrm{c}$
key $[d]=7 \quad \pi[d]=c$
key $[\mathrm{f}]=4 \quad \pi[\mathrm{f}]=\mathrm{c}$
key $[i]=2 \quad \pi[i]=c$
$7 \infty 4 \infty 82$
$\mathrm{Q}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}\} \mathrm{V}_{\mathrm{A}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Extract-MIN(Q) $\Rightarrow \mathrm{i}$

Example

key $[\mathrm{h}]=7 \quad \pi[\mathrm{~h}]=\mathrm{i}$
key $[\mathrm{g}]=6 \quad \pi[\mathrm{~g}]=\mathrm{i}$
$7 \infty 468$
$Q=\{d, e, f, g, h\} \quad V_{A}=\{a, b, c, i\}$
Extract-MIN(Q) $\Rightarrow \mathrm{f}$
key $[\mathrm{g}]=2 \quad \pi[\mathrm{~g}]=\mathrm{f}$
key $[\mathrm{d}]=7 \quad \pi[\mathrm{~d}]=\mathrm{c}$ unchanged
key $[\mathrm{e}]=10 \quad \pi[\mathrm{e}]=\mathrm{f}$
71028
$Q=\{d, e, g, h\} V_{A}=\{a, b, c, i, f\}$
Extract-MIN(Q) $\Rightarrow \mathrm{g}$

Example

$\begin{aligned} \text { key }[\mathrm{h}]=1 & \pi[\mathrm{~h}]=\mathrm{g} \\ 7101 & \end{aligned}$
$Q=\{d, e, h\} \quad V_{A}=\{a, b, c, i, f, g\}$
Extract-MIN(Q) $\Rightarrow h$

710

$Q=\{d, e\} \quad V_{A}=\{a, b, c, i, f, g, h\}$
Extract-MIN $(Q) \Rightarrow d$

Example

$\operatorname{key}[\mathrm{e}]=9 \quad \pi[\mathrm{e}]=\mathrm{f}$
$Q=\{e\} V_{A}=\{a, b, c, i, f, g, h, d\}$
Extract-MIN(Q) $\Rightarrow \mathrm{e}$
$\mathrm{Q}=\varnothing \mathrm{V}_{\mathrm{A}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{i}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{d}, \mathrm{e}\}$

$\operatorname{PRIM}(V, E, w, r)$

1. $\quad Q \leftarrow \varnothing$
2. for each $u \in V$
3. do $\mathrm{key}[u] \leftarrow \infty$
4. $\pi[u] \leftarrow$ NIL
5. INSERT(Q, u)

Total time: $O(\mathrm{VIg}, \mathrm{Elg} \mathrm{V})=O(E \lg V)$
$O(V)$ if Q is implemented as a min-heap
$-k e y[r] \leftarrow 0 \longleftarrow O(\operatorname{lgV})$

Advanced: Using Fibonacci Heaps (CLRS, Ch. 19)

- Depending on the heap implementation, running time could be improved!

EXTRACT-MIN

DECREASE-KEY
Total

binary heap	$\mathrm{O}(\lg \mathrm{V})$	$\mathrm{O}(\lg \mathrm{V})$	$\mathrm{O}(\mathrm{Elg} \mathrm{V})$
Fibonacci heap	$\mathrm{O}(\lg \mathrm{V})$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{V} \lg \mathrm{V}+\mathrm{E})$

Prim's Algorithm

*Prim's algorithm is a "greedy" algorithm
-Greedy algorithms find solutions based on a sequence of choices which are "locally" optimal at each step.

- Nevertheless, Prim's greedy strategy produces a globally optimum solution
- See proof for generic approach

Another Instance of the Generic Approach

(instance 1)

(instance 2)

- A is a forest containing connected components
- Initially, each component is a single vertex
- Any safe edge merges two of these components into one
- Each component remains a tree

Kruskal's Algorithm

*How is it different from Prim's algorithm?
-Prim's algorithm grows a single tree at all times
-Kruskal's algorithm grows multiple trees (i.e., a forest) all at the same time.

- Trees are merged together using safe edges
-Since an MST has exactly |V|-1
 edges, after |V|-1 merges, we have only one component

Kruskal's Algorithm

- Start with each vertex being its own connected component
- Repeatedly merge two components into one by choosing a light edge that connects them
- Which components to consider at each iteration?
- Scan the set of edges in monotonically increasing order by weight (guarantees lightness)

Example

1: $(\mathrm{h}, \mathrm{g}) \quad$ 8: $(\mathrm{a}, \mathrm{h}),(\mathrm{b}, \mathrm{c})$
2: (c, i), (g, f) 9: (d, e)
4: (a, b), (c, f) 10: (e, f)
6: (i, g) 11: (b, h)
7: (c, d), (i, h) 14: (d, f)
$\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{h\},\{i\}$

1. $\operatorname{Add}(h, g) \quad\{g, h\},\{a\},\{b\},\{c\},\{d\},\{e\},\{ \}\},\{i\}$
2. Add (c, i) $\{\mathrm{g}, \mathrm{h}\},\{\mathrm{c}, \mathrm{i}\},\{a\},\{b\},\{d\},\{\mathrm{e}\},\{f\}$
3. $\operatorname{Add}(\mathrm{g}, \mathrm{f}) \quad\{\mathrm{g}, \mathrm{h}, \mathrm{f}\},\{\mathrm{c}, \mathrm{i}\},\{\mathrm{a}\},\{b\},\{d\},\{\mathrm{e}\}$
4. Add $(a, b) \quad\{g, h, f\},\{c, i\},\{a, b\},\{d\},\{e\}$
5. Add (c, f) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{d}\},\{\mathrm{e}\}$
6. Ignore (i, g) \{g, h, f, c, i\}, \{a, b\}, \{d\}, \{e\}
7. Add (c, d) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{e}\}$
8. Ignore (i, h) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{e}\}$
9. Add (a, h) \{g, h, f, c, i, d, a, b\}, \{e\}
10. Ignore (b, c) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}, \mathrm{d}, \mathrm{a}, \mathrm{b}\},\{\mathrm{e}\}$
11. Add (d, e) \{g, h, f, c, i, d, a, b, e\}
12. Ignore (e, f) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}, \mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{e}\}$
13. Ignore (b, h) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}, \mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{e}\}$
14. Ignore (d, f) $\{\mathrm{g}, \mathrm{h}, \mathrm{f}, \mathrm{c}, \mathrm{i}, \mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{e}\}$

Implementation of Kruskal's Algorithm

- Use a disjoint-set data structure (see Ch. 21 in CLRS) to determine whether an edge connects vertices in the
 same or different components

Operations on Disjoint Data Sets

- MAKE-SET(u) - creates a new set whose only member is u
- FIND-SET(u) - returns a representative element from the set that contains u
- Any of the elements of the set that has a particular property
- E.g.: $S_{u}=\{r, s, t, u\}$, the property is that the element be the first one alphabetically

$$
\operatorname{FIND}-\operatorname{SET}(u)=r \quad \operatorname{FIND}-\operatorname{SET}(s)=r
$$

- FIND-SET has to return the same value for any element of a given set

Operations on Disjoint Data Sets

* UNION(u, v) - unites the dynamic sets that contain u and v, say S_{u} and S_{v}

$$
\begin{aligned}
& \text { E.g.: } S_{u}=\{r, s, t, u\}, S_{v}=\{v, x, y\} \\
& \operatorname{UNION}(u, v)=\{r, s, t, u, v, x, y\}
\end{aligned}
$$

* Running time for FIND-SET and UNION depends on specific implementation.
- Can be shown to be amortized $\alpha(n)=0(\lg n)$ where $\alpha()$ is a very slowly growing function here we just need $\mathbf{O}(\lg \mathrm{n})$ [union by rank]

Quick Union: Tree Implementation

- Each set a tree: Root serves as SetName
- To Find, follow parent pointers to the root
- Initially parent pointers set to self
- To union(u,v), make v's root point to u's root

- After union(4,5), union(6,7), union(4,6)

Analysis of Quick Union

```
Initialize(int N)
    parent = new int [N+1];
    for (int e=1; e<=N; e++)
        parent[e] = 0;
int Find(int e)
    while (parent[e] != 0)
        e = parent[e];
    return e;
Union(int i, int j)
    parent[j] = i;
```

Union($\mathrm{N}-1, \mathrm{~N})$;
Union($\mathbf{N - 2 , ~ N - 1) ~ ; ~}$
Union($\mathbf{N - 3 , ~ N - 2) ; ~}$
Union(1, 2) ;
Find(1);
Find (2) ;
Find(N$)$;

- Complexity in the worst case:
- Union is $O(1)$ but Find is $O(n)$
- u Union, f Find: $O(u+f n)$
- N operations: $\Theta\left(N^{2}\right)$ total time

Smart Union (Union by Size)

- union(u,v): make smaller tree point to bigger one's root
- That is, make v's root point to u's root if v's tree is smaller.
- Union $(4,5)$, union $(6,7)$, union $(4,6)$.

7

- Now perform union(3, 4). Smaller tree made the child node.

Union by Size: Link Small Tree to Large One

```
Initialize(int N)
    setsize = new int[N+1];
    parent = new int [N+1];
    for (int e=1; e<< N; e++)
        parent[e] = 0;
        setsize[e] = 1;
int Find(int e)
    while (parent[e] != 0)
        e = parent[e];
    return e;
Union(int i, int j)
    if setsize[i] < setsize[j]
    then
        setsize[j] += setsize[i];
        parent[i] = j;
    else
        setsize[i] += setsize[j];
        parent[j]= i ;
```


Union by Size: Analysis

- Find(u) takes time proportional to u's depth in its tree.
- Show that if u's depth is h, then its tree has at least 2^{h} nodes.
- When union(u, v) performed, the depth of u only increases if its root becomes the child of v.
- That only happens if v's tree is larger than u's tree.
- If u's depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
- Each increment in depth doubles the size of u's tree.
- After n union operations, size is at most n , so depth at most $\log \mathrm{n}$.
- Theorem: With Union-By-Size, we can do find in O(log n) time and union in $\mathrm{O}(1)$ time (assuming roots of u, v known).
- N-1 Unions, $O(N)$ Finds: $O(N \log N)$ total time

The Ultimate Union-Find: Path Compression

```
int Find(int e)
    if (parent[e] == 0)
        return e
    else
        parent[e] = Find(parent[e])
        return parent[e]
```

- While performing Find, direct all nodes on the path to the root.
- Example: Find(14)

The Ultimate Union-Find: Path

 Compression```
int Find(int e)
 if (parent[e] == 0)
 return e
 else
 parent[e] = Find(parent[e])
 return parent[e]
```

- Any single find can still be $\mathrm{O}(\log \mathrm{N})$, but later finds on the same path are faster
- Analysis of UF with Path Compression a tour de force [Robert Tarjan]
- $u$ Unions, $f$ Finds: $O(u+f \alpha(f, u))$
- $\alpha(f, u)$ is a functional inverse of Ackermann' s function
- N-1 Unions, $O(N)$ Finds: "almost linear" total time


## KRUSKAL(V, E, w)

## 1. $A \leftarrow \varnothing$

$\left.\begin{array}{l}\text { 2. for each vertex } v \in V \\ \text { 3. do } \operatorname{MAKE}-\operatorname{SET}(v)\end{array}\right\} O(v)$
4. sort $E$ into non-decreasing order by $w\} \mathbf{O}$ (ElgE)
5. for each ( $u, v$ ) taken from the sorted list $-\mathrm{O}(\mathrm{E})$
6. do if $\operatorname{FIND}-\operatorname{SET}(u) \neq \operatorname{FIND}-\operatorname{SET}(v)$
7. $\quad$ then $A \leftarrow A \cup\{(u, v)\}$ 8. $\operatorname{UNION}(u, v)$
9. return $A$

Running time: $\mathrm{O}(\mathrm{V}+\mathrm{Elg} \mathrm{E}+\mathrm{Elg} \mathrm{V})=\mathrm{O}(\mathrm{Elg} \mathrm{E})$ - depending on the implementation of the disjoint-set data structure

## KRUSKAL(V, E, w)

1. $A \leftarrow \varnothing$
2. for each vertex $v \in V$
3. do MAKE-SET(v) $O(V)$
4. sort $E$ into non-decreasing order by $w\}$ O(ElgE)
5. for each $(u, v)$ taken from the sorted list
6. do if FIND-SET(u) $\neq \operatorname{FIND}-\operatorname{SET}(v)$
7. $\quad$ then $A \leftarrow A \cup\{(u, v)\}$
8. UNION(u,v)
9. return A

- Running time: $\mathrm{O}(\mathrm{V}+\mathrm{ElgE}+\mathrm{Elg} \mathrm{V})=\mathrm{O}(\mathrm{ElgE})$
- Since $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{2}\right)$, we have $\lg \mathrm{E}=\mathrm{O}(2 \lg \mathrm{~V})=\mathrm{O}(\lg \mathrm{V})$


## Kruskal's Algorithm

*Kruskal's algorithm is also a "greedy" algorithm

- Kruskal's greedy strategy produces a globally optimum solution
- Proof for generic approach applies to Kruskal's algorithm too



## Baruvka’s Algorithm

- Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once, but is more "parallel".

```
Algorithm BaruvkaMST(G)
 \(\boldsymbol{T} \leftarrow V\) \{just the vertices of \(\boldsymbol{G}\}\)
 while \(T\) has fewer than \(\mathrm{V} \mid-1\) edges do
 for each connected component \(\boldsymbol{C}\) in \(\boldsymbol{T}\) do
 Let edge \(\boldsymbol{e}\) be the smallest-weight edge from \(\boldsymbol{C}\) to another component in \(\boldsymbol{T}\).
 if \(\boldsymbol{e}\) is not already in \(\boldsymbol{T}\) then
 Add edge \(\boldsymbol{e}\) to \(\boldsymbol{T}\)
 return \(T\)
```

- Each iteration of the while-loop halves the number of connected compontents in T .
- The running time is $O(E \log V)$.


## Complete Graph



## Trees of the Graph at Beginning of Round 1



## List of Trees

Round 1
Tree A


Round 1
Edge A-D


Round 1


Tree B


Round 1


Edge B-A


Round 1


## Tree C



Round 1


Edge C-F


Round 1


Tree D


Round 1


Edge D-A

$5 \quad 6$

H
(J)

Round 1
Tree E


Round 1
Edge E-C


Round 1
Tree F


Round 1
Edge F-C


Round 1

## Tree G



Round 1
Edge G-E


4


Round 1

## Tree H



Round 1
Edge H-J


Round 1


Tree I


Round 1
Edge I-G


Round 1


Tree J


Round 1
Edge J-H



10 G


4


## Round 1 Ends Add Edges



List of Edges to Add

Trees of the Graph at Beginning of Round 2


## List of Trees

- D-A-B
*-C-E-G-I * H-J

Round 2


## Tree D-A-B



Round 2


Edge B-C


Round 2


Tree F-C-E-G-I


Round 2


Edge I-J


Round 2


Tree H-J


Round 2


Edge J-I


## Round 2 Ends Add Edges



## List of Edges to Add

- B-C
- I-J
- J-I

Minimum Spanning Tree


## Complete Graph



## Clustering

- Clustering. Given a set $U$ of $n$ objects labeled $p_{1}, \ldots, p_{n}$, classify into coherent groups.
photos, documents. micro-organisms
- Distance function. Numeric value specifying "closeness" of two objects.
- Fundamental problem. Divide into clusters so that points in different clusters are far apart.
- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster $10^{9}$ sky objects into stars, quasars, galaxies.


## Clustering of Maximum Spacing

- k-clustering. Divide objects into k non-empty groups.
- Distance function. Assume it satisfies several natural properties.
- $d\left(p_{i}, p_{j}\right)=0$ iff $p_{i}=p_{j}$
(identity of indiscernibles)
- $d\left(p_{i}, p_{j}\right) \geq 0$
- $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$
(nonnegativity)
(symmetry)
- Spacing. Min distance between any pair of points in different clusters.
- Clustering of maximum spacing. Given an integer k, find a kclustering of maximum spacing.


$$
k=4
$$

## Greedy Clustering Algorithm

- Single-linkage k-clustering algorithm.
* Form a graph on the vertex set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n-k times until there are exactly k clusters.
- Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).
* Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges.

