CS161: Design and Analysis of Algorithms

Lecture 14 Leonidas Guibas

Outline

 Last lecture: Graph traversal – breadth and depth first search

Today: Minimum spanning trees (MSTs)
Kruskal's algorithm
Prim's algorithm
Boruvka's algorithm

Slides modified from

- http://delab.csd.auth.gr/.../Lec9_MST.ppt
- <u>http://www.cse.unr.edu/~bebis/.../MinimumSpanni...</u>

Representation of Graphs

Two standard ways

Adjacency Lists

Adjacency Matrix

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Graph-Searching Algorithms

• Searching a graph:

- Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.

Breadth-first Search (BFS).

Depth-first Search (DFS).

Breadth-First Search (BFS)

- Expands the frontier between discovered and undiscovered vertices uniformly across the length of the frontier by using a queue.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.

Depth-First Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first" using a stack.
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Graph Search Algorithms

- BFS, DFS often used for their "byproducts" – certain node annotations
- BFS provides shortest path distances to the source, and the BFS tree is a shortest path tree
- BFS selects a set of graph edges with useful properties

DFS Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (*u*, *v*).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depthfirst trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Topological Sort

Topological sort of a DAG (directed acyclic graph):

 Linear ordering of all vertices in graph G such that vertex *u* comes before vertex *v* if edge (*u*, *v*) ∈ G

Real-world example: getting dressed

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.

Complete Graph

The Minimum Spanning Tree for a given graph is the Spanning Tree of minimum cost for that graph.

The Minimum Spanning Tree for a given graph is not unique.

Minimum Spanning Trees

Spanning Tree

 A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph

Minimum Spanning Tree

Spanning tree with the minimum sum of edge weights

Spanning forest

 If a graph is not connected, then there is a spanning tree for each connected component of the graph

Applications of MSTs

 Find the least expensive way to connect a set of cities, terminals, computers, etc.

Problem: Laying Telephone Wire

Wiring: Naive Approach

Expensive!

Wiring: Better Approach Central office

Minimize the total length of wire connecting the customers

Another Example

Problem

- A town has a set of houses and a set of roads
- A road connects two and only two houses

 A road connecting houses u and v has a repair cost w(u, v)

Goal: Repair enough (and no more) roads so that:

- 1. Everyone stays connected
 - i.e., can reach every house from all other houses
- 2. Total repair cost is minimum

Minimum Spanning Trees

- A connected, undirected graph:
 - Vertices = houses, Edges = roads
- A weight w(u, v) on each edge (u, v) ∈ E
- Find $T \subseteq E$ such that:
- 1. T connects all vertices
- 2. $w(T) = \sum_{(u,v) \in T} w(u, v)$ is minimized

Growing a MST – Generic Approach

- Grow a set A of edges from G (initially empty)
- Incrementally add edges to A such that they belong

to a MST

Idea: add only "safe" edges

 An edge (u, v) is safe for A if and only if A ∪ {(u, v)} is also a subset of some MST

Greedy MST Algorithms

Greedy algorithms

- iteratively make "myopic" decisions aimed at locally optimal choice
- but somehow everything works out to yield the global optimum at the end – because, as we grow the local solution, we are always consistent with some global solution

 While growing a partial MST, an edge not currently in the tree is safe, if it can be added while still being part of some MST

Generic MST algorithm

- **1.** A ← ∅
- 2. while A is not a spanning tree
- 3. do find an edge (u, v) that is safe for A
- 4. $A \leftarrow A \cup \{(u, v)\}$
- 5. return A

Key: how do we find safe edges?

Finding Safe Edges

- Let's look at edge (h, g)
 - Is it safe for A initially?
- Later on:

- Let S ⊂ V be any set of vertices that includes h but not g (so that g is in V - S)
- In any MST, there has to be one edge (at least) that connects S with V - S
- Why not choose the edge with minimum weight (h,g)?

Definitions

A cut (S, V - S)

is a partition of vertices

into disjoint sets S and V - S

An edge crosses the cut
 (S, V - S) if one endpoint is in S
 and the other in V – S

Definitions (cont'd)

- A cut respects a set A
 - of edges ⇔ no edge st (
 - in A crosses the cut

An edge is a light edge

crossing a cut \Leftrightarrow its weight is minimum over all edges crossing the cut

 Note that, for a given cut, there can be multiple light edges crossing it

Theorem

Let A be a subset of some MST (i.e., T), (S, V - S) be a cut that respects A, and (u, v) be a light edge crossing (S, V-S). Then (u, v) is safe for A.

Proof:

- Let T be an MST that includes A
 - edges in A are shaded
- <u>Case1</u>: If T includes (u,v), then it would be safe for A
- <u>Case2</u>: Suppose T does not include the edge (u, v)
- Idea: construct another MST T' that includes $A \cup \{(u, v)\}$

Theorem - Proof

S

Х

V - S

У

- T contains a unique path p between u and v
- Path p must cross the cut (S, V S) at least once: let (x, y) be that edge u
 Let's remove (x,y) ⇒ break
 - T into two components.
- Adding (u, v) reconnects the components

$$T' = T - {(x, y)} \cup {(u, v)}$$

Theorem – Proof (cont.)

$$T' = T - \{(x, y)\} \cup \{(u, v)\}$$
Have to show that T' is an MST:
• (u, v) is a light edge

$$\Rightarrow w(u, v) \le w(x, y)$$
• $w(T') = w(T) - w(x, y) + w(u, v)$

$$\leq w(T)$$
• Since T is a spanning tree
 $w(T) \le w(T') \Rightarrow T'$ must be an MST as well

Theorem – Proof (cont.)

Need to show that (u, v) is safe for A:

i.e., (u, v) can be a part of an MST

• A
$$\subseteq$$
 T and (x, y) \notin T \Rightarrow

$$(x, y) \notin A \Rightarrow A \subseteq T'$$

Since T' is an MST

 \Rightarrow (u, v) is safe for A

Prim's Algorithm

- The edges in set A always form a single tree
- Start from an arbitrary "root": V_A = {a}
- At each step:
 - Find a light edge crossing $(V_A, V V_A)$
 - Add this edge to A
 - Repeat until the tree spans all vertices

Greedy approach

How to Find Light Edges Quickly?

Use a priority queue Q:

Contains vertices not yet
 included in the tree, i.e., (V – V_A)

We associate a key with each vertex v:

key[v] = minimum weight of any edge (u, v)connecting v to V_A

Key[a]=min(w₁,w₂)

How to Find Light Edges Quickly? (cont.)

 After adding a new node to V_A we update the weights of all the nodes <u>adjacent to it</u>

e.g., after adding **a** to the tree, **k[b]=4** and **k[h]=8**

• Key of v is ∞ if v is not adjacent to any vertices in V_A

key [b] = 4 π [b] = a key [h] = 8 π [h] = a

 $4 \infty \infty \infty \infty \infty 8 \infty$ $Q = \{b, c, d, e, f, g, h, i\} V_A = \{a\}$ Extract-MIN(Q) $\Rightarrow b$

key [c] = 8 π [c] = b key [h] = 8 π [h] = a - unchanged $8 \infty \infty \infty \infty 8 \infty$ $Q = \{c, d, e, f, g, h, i\} V_A = \{a, b\}$ Extract-MIN(Q) \Rightarrow c key [d] = 7 π [d] = c key [f] = 4 π [f] = c key [i] = 2 π [i] = c $7 \infty 4 \infty 8 2$

 $\label{eq:Q} \begin{aligned} \mathsf{Q} &= \{\mathsf{d},\,\mathsf{e},\,\mathsf{f},\,\mathsf{g},\,\mathsf{h},\,\mathsf{i}\} \ \mathsf{V}_\mathsf{A} &= \{\mathsf{a},\,\mathsf{b},\,\mathsf{c}\} \\ \mathsf{Extract}\text{-}\mathsf{MIN}(\mathsf{Q}) &\Rightarrow \mathsf{i} \end{aligned}$

key [h] = 7 π [h] = i key [g] = 6 π [g] = i 7 ∞ 4 6 8 Q = {d, e, f, g, h} V_A = {a, b, c, i} Extract-MIN(Q) \Rightarrow f

key [g] = 2 $\pi [g] = f$ key [d] = 7 $\pi [d] = c$ unchanged key [e] = 10 $\pi [e] = f$ **7 10 2 8**

 $\label{eq:Q} \begin{aligned} \mathsf{Q} &= \{\mathsf{d},\,\mathsf{e},\,\mathsf{g},\,\mathsf{h}\} \ \ \mathsf{V}_\mathsf{A} &= \{\mathsf{a},\,\mathsf{b},\,\mathsf{c},\,\mathsf{i},\,\mathsf{f}\} \\ \mathsf{Extract-MIN}(\mathsf{Q}) &\Rightarrow \mathsf{g} \end{aligned}$

key [h] = 1 π [h] = g 7 10 1 Q = {d, e, h} V_A = {a, b, c, i, f, g} Extract-MIN(Q) \Rightarrow h

7 10

 $\label{eq:Q} \begin{aligned} \mathsf{Q} &= \{\mathsf{d},\,\mathsf{e}\} \ \ \mathsf{V}_\mathsf{A} &= \{\mathsf{a},\,\mathsf{b},\,\mathsf{c},\,\mathsf{i},\,\mathsf{f},\,\mathsf{g},\,\mathsf{h}\} \\ \\ \mathsf{Extract-MIN}(\mathsf{Q}) &\Rightarrow \mathsf{d} \end{aligned}$
Example

key [e] = 9 π [e] = f 9 Q = {e} $V_A = \{a, b, c, i, f, g, h, d\}$ Extract-MIN(Q) \Rightarrow e Q = $\emptyset V_A = \{a, b, c, i, f, g, h, d, e\}$

PRIM(V, E, w, r)

1.	$Q \leftarrow \emptyset$
2.	for each $u \in V$ Total time: $O(VlgV + ElgV) = O(ElgV)$
3.	do key[u] $\leftarrow \infty$ $\bigvee O(V)$ if Q is implemented
4.	$\pi[u] \leftarrow NIL$ as a min-neap
5.	INSERT(Q, u)
6.	DECREASE-KEY(Q, r, 0) \blacktriangleright key[r] \leftarrow 0 \longleftarrow O(lgV)
7.	while $\mathbf{Q} \neq \emptyset$
8.	do u \leftarrow EXTRACT-MIN(Q) \leftarrow Takes O(lgV) $\int O(VlgV)$
9.	for each $v \in Adj[u] \leftarrow Executed O(E)$ times total
10.	do if $v \in Q$ and $w(u, v) < key[v] \leftarrow Constant $ (C(ElgV)
11.	then $\pi[v] \leftarrow u$ Takes $O(lgV)$
12.	DECREASE-KEY(Q, v, w(u, v))

Advanced: Using Fibonacci Heaps (CLRS, Ch. 19)

• Depending on the heap implementation, running time could be improved!

	EXTRACT-MIN	DECREASE-KEY	Total
binary heap	O(lgV)	O(lgV)	O(ElgV)
Fibonacci heap	O(lgV)	O(1)	O(VlgV + E)

Prim's Algorithm

Prim's algorithm is a "greedy" algorithm

 Greedy algorithms find solutions based on a sequence of choices which are "locally" optimal at each step.

 Nevertheless, Prim's greedy strategy produces a globally optimum solution

See proof for generic approach

Another Instance of the Generic Approach

(instance 1)

 A is a forest containing connected components

V - S

S

- Initially, each component is a single vertex
- Any safe edge merges two of these components into one

u

Each component remains a tree

(instance 2)

Kruskal's Algorithm

How is it different from Prim's algorithm?

- Prim's algorithm grows a single tree at all times
- Kruskal's algorithm grows multiple trees (i.e., a forest) all at the same time.
- Trees are merged together using safe edges
- Since an MST has exactly |V| 1 edges, after |V| - 1 merges, we have only one component

Kruskal's Algorithm

- Start with each vertex being its own connected component
- Repeatedly merge two components into one by choosing a light edge that connects them
- Which components to consider at each iteration?
 - Scan the set of edges in monotonically increasing order by weight (guarantees lightness)

Example

1: (h, g)8: (a, h), (b, c)2: (c, i), (g, f)9: (d, e)4: (a, b), (c, f)10: (e, f)6: (i, g)11: (b, h)7: (c, d), (i, h)14: (d, f)

 $\{a\},\,\{b\},\,\{c\},\,\{d\},\,\{e\},\,\{f\},\,\{g\},\,\{h\},\,\{i\}$

	1.	Add (h, g)	$\{g, h\}, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{i\}$
	2.	Add (c, i)	{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}
_	3.	Add (g, f)	{g, h, f}, {c, i}, {a}, {b}, {d}, {e}
;)	4.	Add (a, b)	{g, h, f}, {c, i}, {a, b}, {d}, {e}
	5.	Add (c, f)	{g, h, f, c, i}, {a, b}, {d}, {e}
	6.	Ignore (i, g)	{g, h, f, c, i}, {a, b}, {d}, {e}
	7.	Add (c, d)	{g, h, f, c, i, d}, {a, b}, {e}
	8.	Ignore (i, h)	{g, h, f, c, i, d}, {a, b}, {e}
	9.	Add (a, h)	{g, h, f, c, i, d, a, b}, {e}
	10.	Ignore (b, c)	{g, h, f, c, i, d, a, b}, {e}
	11.	Add (d, e)	{g, h, f, c, i, d, a, b, e}
	12.	Ignore (e, f)	{g, h, f, c, i, d, a, b, e}
	13.	Ignore (b, h)	{g, h, f, c, i, d, a, b, e}
	14.	Ignore (d, f)	{g, h, f, c, i, d, a, b, e}

Implementation of Kruskal's Algorithm

 Use a disjoint-set data structure (see Ch. 21 in CLRS) to determine whether an edge connects vertices in the same or different components

Operations on Disjoint Data Sets

- MAKE-SET(u) creates a new set whose only member is u
- FIND-SET(u) returns a representative element from the set that contains u
 - Any of the elements of the set that has a particular property
 - E.g.: S_u = {r, s, †, u}, the property is that the element be the first one alphabetically

FIND-SET(u) = r FIND-SET(s) = r

 FIND-SET has to return the same value for any element of a given set

Operations on Disjoint Data Sets

- UNION(u, v) unites the dynamic sets that contain u and v, say S_u and S_v
 - E.g.: $S_u = \{r, s, t, u\}, S_v = \{v, x, y\}$ UNION $(u, v) = \{r, s, t, u, v, x, y\}$
- Running time for FIND-SET and UNION depends on specific implementation.
- Can be shown to be amortized α(n)=o(lg n) where α() is a very slowly growing function – here we just need O(lg n) [union by rank]

Quick Union: Tree Implementation

- Each set a tree: Root serves as SetName
 - To Find, follow parent pointers to the root
 - Initially parent pointers set to self
 - To union(u,v), make v's root point to u's root

$$\begin{array}{c} \begin{array}{c} \end{array} \\ 0 \end{array} \\ 1 \end{array} \\ 2 \end{array} \\ 3 \end{array} \\ 4 \end{array} \\ 5 \end{array} \\ 6 \end{array} \\ 7 \end{array}$$

After union(4,5), union(6,7), union(4,6)

Analysis of Quick Union

N−1

1

2

3

Complexity in the worst case:

- Union is O(1) but Find is O(n)
- u Union, f Find : O(u + f n)

• N operations: $\Theta(N^2)$ total time

Smart Union (Union by Size)

- union(u,v): make smaller tree point to bigger one's root
- That is, make v's root point to u's root if v's tree is smaller.
- Union(4,5), union(6,7), union(4,6).

Now perform union(3, 4). Smaller tree made the child node.

Union by Size: Link Small Tree to Large One

```
Initialize(int N)
setsize = new int[N+1];
parent = new int [N+1];
for (int e=1; e <= N; e++)
   parent[e] = 0;
   setsize[e] = 1;</pre>
```

```
int Find(int e)
while (parent[e] != 0)
    e = parent[e];
return e;
```

```
Union(int i, int j)
if setsize[i] < setsize[j]
then
   setsize[j] += setsize[i];
   parent[i] = j;
else
   setsize[i] += setsize[j];
   parent[j] = i ;</pre>
```

Lemma: After n union ops, the tree height is at most log n.

Union by Size: Analysis

- Find(u) takes time proportional to u's depth in its tree.
- Show that if u's depth is h, then its tree has at least 2^h nodes.
- When union(u,v) performed, the depth of u only increases if its root becomes the child of v.
 - That only happens if v's tree is larger than u's tree.
- If u's depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
 - Each increment in depth doubles the size of u's tree.
 - After n union operations, size is at most n, so depth at most log n.
- Theorem: With Union-By-Size, we can do find in O(log n) time and union in O(1) time (assuming roots of u, v known).
- *N-1* Unions, *O(N)* Finds: *O*(*N log N*) total time

The Ultimate Union-Find: Path Compression

- int Find(int e)
 if (parent[e] == 0)
 return e
 else
 parent[e] = Find(parent[e])
 return parent[e]
- While performing Find, direct all nodes on the path to the root.
- Example: Find(14)

The Ultimate Union-Find: Path Compression

```
int Find(int e)
  if (parent[e] == 0)
    return e
  else
    parent[e] = Find(parent[e])
    return parent[e]
```

- Any single <u>find</u> can still be O(log N), but later finds on the same path are faster
- Analysis of UF with Path Compression a tour de force [Robert Tarjan]
- *u* Unions, *f* Finds: $O(u + f \alpha(f, u))$
- $\alpha(f, u)$ is a functional inverse of Ackermann's function
- N-1 Unions, O(N) Finds: "almost linear" total time

KRUSKAL(V, E, w)

Running time: O(V+ElgE+ElgV)=O(ElgE) – depending on the implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

D(E)

O(IgV)

1. A $\leftarrow \emptyset$

- for each vertex v ∈ V do MAKE-SET(v) O(V)
 sort E into non-decreasing order by w O(ElgE)
 for each (u, v) taken from the sorted list O(E)
- do if FIND-SET(u) \neq FIND-SET(v), 6.
- then $A \leftarrow A \cup \{(u, v)\}$ 7. UNION(u, v)8.

9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)
- Since $E=O(V^2)$, we have IgE=O(2IgV)=O(IgV)

Kruskal's Algorithm

- Kruskal's algorithm is also a "greedy" algorithm
- Kruskal's greedy strategy produces a globally optimum solution
- Proof for generic approach applies to Kruskal's algorithm too

Baruvka's Algorithm

 Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once, but is more "parallel".

Algorithm BaruvkaMST(G) $T \leftarrow V$ {just the vertices of G}while T has fewer than V|-1 edges dofor each connected component C in T doLet edge e be the smallest-weight edge from C to another component in T.if e is not already in T thenAdd edge e to Treturn T

 Each iteration of the while-loop halves the number of connected compontents in T.

• The running time is O(E log V).

Complete Graph 4 С В 4 2 1 А 4 Е F 2 D 3 10 5 G 5 3 6 Ι Η 3

J

• A • B • C D **•** E • F • G • H

List of Trees

List of Edges to Add

- A-D
 I-G
 B-A
 J-H
- C-F
- D-A
- E-C
- F-C
- ♦ G-E
- ♦ H-J

List of Trees

List of Edges to Add

◆ B-C◆ I-J◆ J-I

Clustering. Given a set U of n objects labeled p₁, ..., p_n, classify into coherent groups.

photos, documents. micro-organisms

 Distance function. Numeric value specifying "closeness" of two objects.

number of corresponding pixels whose intensities differ by some threshold

- Fundamental problem. Divide into clusters so that points in different clusters are far apart.
 - Routing in mobile ad hoc networks.
 - Identify patterns in gene expression.
 - Document categorization for web search.
 - Similarity searching in medical image databases
 - Skycat: cluster 10⁹ sky objects into stars, quasars, galaxies.

Clustering of Maximum Spacing

- k-clustering. Divide objects into k non-empty groups.
- Distance function. Assume it satisfies several natural properties.
 - $d(p_i, p_j) = 0$ iff $p_i = p_j$
 - $d(p_i, p_j) \ge 0$ • $d(p_i, p_i) = d(p_i, p_i)$

- (identity of indiscernibles) (nonnegativity) (symmetry)
- Spacing. Min distance between any pair of points in different clusters.
- Clustering of maximum spacing. Given an integer k, find a kclustering of maximum spacing.

k = 4

Greedy Clustering Algorithm

Single-linkage k-clustering algorithm.

- Form a graph on the vertex set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n-k times until there are exactly k clusters.
- Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).
- Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges.