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Outline

Last lecture: Graph traversal – breadth 
and depth first search

Today: Minimum spanning trees (MSTs)
Kruskal’s algorithm
Prim’s algorithm
Boruvka’s algorithm

Slides modified from
• http://delab.csd.auth.gr/.../Lec9_MST.ppt
• http://www.cse.unr.edu/~bebis/.../MinimumSpanni... 2
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Representation of Graphs
Two standard ways

Adjacency Lists
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a

dc

b a
b
c
d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1   2   3   4
1  0   1   1   1
2  1   0   1   0
3  1   1   0   1
4  1   0   1   0 3



Graph-Searching Algorithms

Searching a graph:
Systematically follow the edges of a graph 
to visit the vertices of the graph.

Used to discover the structure of a graph.
Standard graph-searching algorithms.

Breadth-first Search (BFS).
Depth-first Search (DFS).
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Breadth-First Search (BFS)
Expands the frontier between discovered and 
undiscovered vertices uniformly across the length of 
the frontier by using a queue.

A vertex is “discovered” the first time it is encountered 
during the search.
A vertex is “finished” if all vertices adjacent to it have been 
discovered.

Colors the vertices to keep track of progress.
White – Undiscovered.
Gray – Discovered but not finished.
Black – Finished.
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Depth-First Search (DFS)
Explore edges out of the most recently discovered 
vertex v.
When all edges of v have been explored, 
backtrack to explore other edges leaving the 
vertex from which v was discovered (its 
predecessor).
“Search as deep as possible first” – using a stack.
Continue until all vertices reachable from the 
original source are discovered.
If any undiscovered vertices remain, then one of 
them is chosen as a new source and search is 
repeated from that source.
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Graph Search Algorithms

BFS, DFS often used for their “by-
products” – certain node annotations
BFS provides shortest path distances to 
the source, and the BFS tree is a shortest 
path tree
BFS selects a set of graph edges with 
useful properties
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DFS Classification of Edges

Tree edge: in the depth-first forest. Found by 
exploring (u, v).
Back edge: (u, v), where u is a descendant of v (in 
the depth-first tree).
Forward edge: (u, v), where v is a descendant of u, 
but not a tree edge.
Cross edge: any other edge. Can go between 
vertices in same depth-first tree or in different depth-
first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges. No forward or 
cross edges.
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Topological Sort

Topological sort of a DAG (directed 
acyclic graph):

Linear ordering of all vertices in graph G 
such that vertex u comes before vertex v if 
edge (u, v) ∈ G

Real-world example: getting dressed
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A spanning tree of a graph is just a subgraph that 
contains all the vertices and is a tree.

A graph may have many spanning trees.

or or or

Some Spanning Trees from Graph AGraph A

Spanning Trees



All 16 of its Spanning TreesComplete Graph



Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of 
minimum cost for that graph.
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Complete Graph Minimum Spanning Tree

The Minimum Spanning Tree for a given graph is not unique.



Minimum Spanning Trees
Spanning Tree

A tree (i.e., connected, acyclic graph) which 
contains all the vertices of the graph

Minimum Spanning Tree
Spanning tree with the minimum sum of edge 
weights

Spanning forest
If a graph is not connected, then there is a 
spanning tree for each connected component of 
the graph

a

b c d

e

g g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6



Applications of MSTs

Find the least expensive way to connect a 
set of cities, terminals, computers, etc.



Problem: Laying Telephone 
Wire

Central office



Wiring: Naive Approach

Central office

Expensive!



Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers



Another Example
Problem

A town has a set of houses 
and a set of roads
A road connects two and only 
two houses
A road connecting houses u and v has a repair 
cost w(u, v)

Goal: Repair enough (and no more) roads so 
that:

1. Everyone stays connected 
i.e., can reach every house from all other houses

2.   Total repair cost is minimum
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Minimum Spanning Trees
A connected, undirected graph:

Vertices = houses,       Edges = roads

A weight w(u, v) on each edge (u, v) ∈ E
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Find T ⊆ E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)∈T w(u, v) is 

minimized



Growing a MST – Generic Approach
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• Grow a set A of edges from G 
(initially empty)

• Incrementally add edges to A 
such that they belong 
to a MST

– An edge (u, v) is safe for A if and 
only if A ∪ {(u, v)} is also a subset 
of some MST

Idea: add only “safe” edges



Greedy MST Algorithms
Greedy algorithms

iteratively make “myopic” decisions – aimed 
at locally optimal choice
but somehow everything works out to yield 
the global optimum at the end – because, as 
we grow the local solution, we are always 
consistent with some global solution

While growing a partial MST, an edge not 
currently in the tree is safe, if it can be 
added while still being part of some MST
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Generic MST algorithm
1. A ←  ∅

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A ∪ {(u, v)} 

5. return A

Key: how do we find safe edges?
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S

V - S

Finding Safe Edges
Let’s look at edge (h, g)

Is it safe for A initially?

Later on:
Let S ⊂ V be any set of vertices that includes h but 
not g (so that g is in V - S)

In any MST, there has to be one edge (at least) 
that connects S with V - S 

Why not choose the edge with minimum weight
(h,g)? 
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Definitions

A cut (S, V - S) 
is a partition of vertices 
into disjoint sets S and V - S

An edge crosses the cut
(S, V - S) if one endpoint is in S 
and the other in V – S
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Definitions (cont’d)
A cut respects a set A
of edges ⇔ no edge 
in A crosses the cut
An edge is a light edge 

crossing a cut ⇔ its weight is minimum 
over all edges crossing the cut

Note that, for a given cut, there can be 
multiple light edges crossing it
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Theorem
Let A be a subset of some MST (i.e., T), (S, V - S) be a 
cut that respects A, and (u, v) be a light edge crossing 
(S, V-S). Then (u, v) is safe for A .

Proof:
Let T be an MST that includes A

edges in A are shaded
Case1: If T includes (u,v), then 
it would be safe for A
Case2: Suppose T does not include

the edge (u, v)
Idea: construct another MST T’

that includes A ∪ {(u, v)}
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u

v

S

V - S

Theorem - Proof
T contains a unique path p between u and v

Path p must cross the 

cut (S, V - S) at least 

once: let (x, y) be that edge

Let’s remove (x,y) ⇒ break

T into two components.

Adding (u, v) reconnects the components 

T’ = T - {(x, y)} ∪ {(u, v)}
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Theorem – Proof (cont.)
T’ = T - {(x, y)} ∪ {(u, v)}
Have to show that T’ is an MST:

(u, v) is a light edge 
⇒ w(u, v) ≤ w(x, y)
w(T ’) = w(T) - w(x, y) + w(u, v)

≤ w(T)
Since T  is a spanning tree
w(T) ≤ w(T ’) ⇒ T’  must be an MST as well
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Theorem – Proof (cont.)
Need to show that (u, v) is safe for A:

i.e., (u, v) can be a part of an MST

A ⊆ T and (x, y) ∉ T ⇒

(x, y) ∉ A ⇒ A ⊆T’

A ∪ {(u, v)} ⊆ T’

Since T’  is an MST 

⇒ (u, v) is safe for A
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Prim’s Algorithm
The edges in set A always form a single tree

Start from an arbitrary “root”: VA = {a}

At each step:
Find a light edge crossing (VA, V - VA)

Add this edge to A

Repeat until the tree spans all vertices
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Greedy approach



How to Find Light Edges 
Quickly?

Use a priority queue Q:
Contains vertices not yet 
included in the tree, i.e., (V – VA)

VA = {a}, Q = {b, c, d, e, f, g, h, i}

We associate a key with each vertex v:
key[v] = minimum weight of any edge (u, v)

connecting v to VA
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Key[a]=min(w1,w2)
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How to Find Light Edges Quickly? 
(cont.)

After adding a new node to VA we update the weights of all 
the nodes adjacent to it

e.g., after adding a to the tree, k[b]=4 and k[h]=8

Key of v is ∞ if v is not adjacent to any vertices in VA
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Example
0  ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Q = {a, b, c, d, e, f, g, h, i} 
VA = ∅
Extract-MIN(Q) ⇒ a
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key [b] = 4 π [b] = a
key [h] = 8 π [h] = a

4  ∞ ∞ ∞ ∞ ∞ 8 ∞
Q = {b, c, d, e, f, g, h, i}  VA = {a}
Extract-MIN(Q) ⇒ b
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4 ∞

∞

8 ∞ ∞

8
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key [c] = 8 π [c] = b
key [h] = 8 π [h] = a - unchanged

8  ∞ ∞ ∞ ∞ 8 ∞
Q = {c, d, e, f, g, h, i}  VA = {a, b}
Extract-MIN(Q) ⇒ c
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key [d] = 7 π [d] = c
key [f] = 4 π [f] = c
key [i] = 2 π [i] = c

7 ∞ 4 ∞ 8  2
Q = {d, e, f, g, h, i}  VA = {a, b, c}
Extract-MIN(Q) ⇒ i
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Example
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key [h] = 7 π [h] = i
key [g] = 6 π [g] = i

7 ∞ 4 6  8
Q = {d, e, f, g, h}  VA = {a, b, c, i}
Extract-MIN(Q) ⇒ f
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key [g] = 2 π [g] = f
key [d] = 7 π [d] = c unchanged

key [e] = 10 π [e] = f
7 10 2 8

Q = {d, e, g, h}  VA = {a, b, c, i, f}
Extract-MIN(Q) ⇒ g
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Example
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key [h] = 1 π [h] = g
7 10 1

Q = {d, e, h}  VA = {a, b, c, i, f, g}
Extract-MIN(Q) ⇒ h
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Q = {d, e}  VA = {a, b, c, i, f, g, h}
Extract-MIN(Q) ⇒ d
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Example
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key [e] = 9 π [e] = f
9

Q = {e}  VA = {a, b, c, i, f, g, h, d}
Extract-MIN(Q) ⇒ e
Q = ∅ VA = {a, b, c, i, f, g, h, d, e}
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PRIM(V, E, w, r)
1. Q ← ∅

2. for each u ∈ V
3. do key[u] ← ∞
4. π[u] ← NIL
5. INSERT(Q, u)
6. DECREASE-KEY(Q, r, 0)         ► key[r] ← 0
7. while Q ≠ ∅

8. do u ← EXTRACT-MIN(Q)
9. for each v ∈ Adj[u]
10. do if v ∈ Q and w(u, v) < key[v]
11. then π[v] ← u
12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 
as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 
operations:
O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)



Advanced: Using Fibonacci 
Heaps (CLRS, Ch. 19)

• Depending on the heap implementation, running time
could be improved!



Prim’s Algorithm 
Prim’s algorithm is a “greedy” algorithm

Greedy algorithms find solutions based on a 
sequence of choices which are “locally”
optimal at each step.

Nevertheless, Prim’s greedy strategy 
produces a globally optimum solution

See proof for generic approach



Another Instance of the
Generic Approach

A is a forest containing connected 
components

Initially, each component is a single 
vertex

Any safe edge merges two of 
these components into one

Each component remains a tree
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Kruskal’s Algorithm
How is it different from Prim’s algorithm?

Prim’s algorithm grows a single
tree at all times
Kruskal’s algorithm grows 
multiple trees  (i.e., a forest) 
all at the same time.
Trees are merged together 
using safe edges

Since an MST has exactly |V| - 1 
edges, after |V| - 1 merges, 
we have only one component

u

v

tree1

tree2



We add
edge (c, f)
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Kruskal’s Algorithm
Start with each vertex being its 
own connected component
Repeatedly merge two 
components into one by 
choosing a light edge that 
connects them
Which components to consider 
at each iteration?

Scan the set of edges in 
monotonically increasing order by 
weight (guarantees lightness)



Example
1. Add (h, g)
2. Add (c, i)
3. Add (g, f)
4. Add (a, b)
5. Add (c, f)
6. Ignore (i, g)
7. Add (c, d)
8. Ignore (i, h)
9. Add (a, h)
10. Ignore (b, c)
11. Add (d, e)
12. Ignore (e, f)
13. Ignore (b, h)
14. Ignore (d, f)
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1: (h, g)
2: (c, i), (g, f)
4: (a, b), (c, f)
6: (i, g)
7: (c, d), (i, h)

8: (a, h), (b, c) 
9: (d, e)
10: (e, f)
11: (b, h)
14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}
{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}



We add
edge (c, f)
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Implementation of Kruskal’s
Algorithm

• Use a disjoint-set data 
structure (see Ch. 21 in 
CLRS) to determine 
whether an edge 
connects vertices in the 
same or different 
components



Operations on Disjoint Data Sets
MAKE-SET(u) – creates a new set whose only 
member is u
FIND-SET(u) – returns a representative 
element from the set that contains u

Any of the elements of the set that has a particular 
property
E.g.: Su = {r, s, t, u}, the property is that the element 
be the first one alphabetically

FIND-SET(u) = r   FIND-SET(s) = r
FIND-SET has to return the same value for any 
element of a given set



UNION(u, v) – unites the dynamic sets that 
contain u and v, say Su and Sv

E.g.: Su =  {r, s, t, u},  Sv = {v, x, y} 

UNION (u, v) = {r, s, t, u, v, x, y}

Running time for FIND-SET and UNION 
depends on specific implementation.

Can be shown to be amortized α(n)=o(lg n)
where α() is a very slowly growing function –
here we just need O(lg n) [union by rank]

Operations on Disjoint Data Sets
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Quick Union: Tree Implementation 
Each set a tree:  Root serves as SetName

To Find, follow parent pointers to the root
Initially parent pointers set to self
To union(u,v), make v’s root point to u’s root

After union(4,5), union(6,7), union(4,6)
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Analysis of Quick Union

Complexity in the worst case: 
Union is O(1) but Find is O(n)
u Union,  f Find :  O(u + f n)
N operations: Θ(N2) total time

Initialize(int N)
parent = new int [N+1];
for (int e=1; e<=N; e++)
parent[e] = 0;

int Find(int e) 
while (parent[e] != 0)
e = parent[e];

return e;

Union(int i, int j)
parent[j] = i;

1

2

3

N−1

N

Union(N-1, N);
Union(N-2, N-1);
Union(N-3, N-2);
…

Union(1, 2);
Find(1);
Find(2);
…
Find(N);
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 union(u,v): make smaller tree point to bigger one’s root
 That is, make v’s root point to u’s root if v’s tree is smaller. 
 Union(4,5), union(6,7), union(4,6) .

 Now perform union(3, 4). Smaller tree made the child node.

Smart Union (Union by Size)
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Union by Size: 
Link Small Tree to Large One

Initialize(int N)
setsize = new int[N+1];
parent = new int [N+1];
for (int e=1; e <= N; e++)
parent[e] = 0;
setsize[e] = 1;

int Find(int e)
while (parent[e] != 0)
e = parent[e];

return e;

Union(int i, int j)
if setsize[i] < setsize[j]
then
setsize[j] += setsize[i];
parent[i] = j;

else
setsize[i] += setsize[j];
parent[j] = i ;

Lemma:  After n union 
ops, the tree height is at 
most log n.
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 Find(u) takes time proportional to u’s depth in its tree.
 Show that if u’s depth is h, then its tree has at least 2h nodes.

 When union(u,v) performed, the depth of u only increases if its 
root becomes the child of v.
 That only happens if v’s tree is larger than u’s tree.

 If u’s depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
 Each increment in depth doubles the size of u’s tree.
 After n union operations, size is at most n, so depth at most log n.

 Theorem:  With Union-By-Size, we can do find in O(log n) time 
and union in O(1) time (assuming roots of u, v known).

 N-1 Unions, O(N) Finds: O(N log N) total time

Union by Size: Analysis
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The Ultimate Union-Find: Path 
Compression 

int Find(int e)
if (parent[e] == 0)
return e

else
parent[e] = Find(parent[e])
return parent[e]

 While performing Find, direct all nodes on the path to the 
root.

 Example: Find(14)
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The Ultimate Union-Find: Path 
Compression 

int Find(int e)
if (parent[e] == 0)
return e

else
parent[e] = Find(parent[e])
return parent[e]

 Any single find can still be O(log N), 
but later finds on the same path are faster

 Analysis of UF with Path Compression a tour de force [Robert 
Tarjan]

 u Unions,  f Finds:  O(u + f α(f, u))
 α(f, u) is a functional inverse of Ackermann’s function
 N-1 Unions, O(N) Finds:  “almost linear” total time



1. A ←  ∅
2. for each vertex v ∈ V
3. do MAKE-SET(v)
4. sort E into non-decreasing order by w
5. for each (u, v) taken from the sorted list
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)} 
8. UNION(u, v)
9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – depending on the 
implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)



1. A ←  ∅
2. for each vertex v ∈ V
3. do MAKE-SET(v)
4. sort E into non-decreasing order by w
5. for each (u, v) taken from the sorted list
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)} 
8. UNION(u, v)
9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)
- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)



Kruskal’s Algorithm

Kruskal’s algorithm is also a “greedy”
algorithm
Kruskal’s greedy strategy produces a 
globally optimum solution
Proof for generic approach 
applies to Kruskal’s
algorithm too

u

v

S

V - S

x

y



Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many 
“clouds” at once, but is more “parallel”.

Each iteration of the while-loop halves the number of connected 
compontents in T.

The running time is O(E log V).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than V|-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T
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Clustering
Clustering.  Given a set U of n objects labeled p1, …, pn, 
classify into coherent groups.

Distance function.  Numeric value specifying "closeness" of 
two objects.

Fundamental problem.  Divide into clusters so that points in 
different clusters are far apart.

Routing in mobile ad hoc networks.
Identify patterns in gene expression.
Document categorization for web search.
Similarity searching in medical image databases
Skycat:  cluster 109 sky objects into stars, quasars, galaxies.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold



Clustering of Maximum Spacing
k-clustering.  Divide objects into k non-empty groups.

Distance function.  Assume it satisfies several natural properties.
d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
d(pi, pj) ≥ 0 (nonnegativity)
d(pi, pj) = d(pj, pi) (symmetry)

Spacing.  Min distance between any pair of points in different 
clusters.
Clustering of maximum spacing.  Given an integer k, find a k-
clustering of maximum spacing.

spacing

k = 4



Greedy Clustering Algorithm
Single-linkage k-clustering algorithm.

Form a graph on the vertex set U, corresponding to n clusters.
Find the closest pair of objects such that each object is in a 
different cluster, and add an edge between them.
Repeat n-k times until there are exactly k clusters.

Key observation.  This procedure is precisely Kruskal's
algorithm
(except we stop when there are k connected components).

Remark.  Equivalent to finding an MST and deleting the k-1 
most expensive edges.
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