
CS161:
Design and Analysis of

Algorithms

Lecture 14
Leonidas Guibas

1

Outline

Last lecture: Graph traversal – breadth
and depth first search

Today: Minimum spanning trees (MSTs)
Kruskal’s algorithm
Prim’s algorithm
Boruvka’s algorithm

Slides modified from
• http://delab.csd.auth.gr/.../Lec9_MST.ppt
• http://www.cse.unr.edu/~bebis/.../MinimumSpanni... 2

http://delab.csd.auth.gr/.../Lec9_MST.ppt
http://www.cse.unr.edu/%7Ebebis/.../MinimumSpanni...

Representation of Graphs
Two standard ways

Adjacency Lists

Adjacency Matrix

a

dc

b a
b
c
d

b

a

d

d c

c

a b

a c

a

dc

b
1 2

3 4

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0 3

Graph-Searching Algorithms

Searching a graph:
Systematically follow the edges of a graph
to visit the vertices of the graph.

Used to discover the structure of a graph.
Standard graph-searching algorithms.

Breadth-first Search (BFS).
Depth-first Search (DFS).

4

Breadth-First Search (BFS)
Expands the frontier between discovered and
undiscovered vertices uniformly across the length of
the frontier by using a queue.

A vertex is “discovered” the first time it is encountered
during the search.
A vertex is “finished” if all vertices adjacent to it have been
discovered.

Colors the vertices to keep track of progress.
White – Undiscovered.
Gray – Discovered but not finished.
Black – Finished.

5

Depth-First Search (DFS)
Explore edges out of the most recently discovered
vertex v.
When all edges of v have been explored,
backtrack to explore other edges leaving the
vertex from which v was discovered (its
predecessor).
“Search as deep as possible first” – using a stack.
Continue until all vertices reachable from the
original source are discovered.
If any undiscovered vertices remain, then one of
them is chosen as a new source and search is
repeated from that source.

6

Graph Search Algorithms

BFS, DFS often used for their “by-
products” – certain node annotations
BFS provides shortest path distances to
the source, and the BFS tree is a shortest
path tree
BFS selects a set of graph edges with
useful properties

7

DFS Classification of Edges

Tree edge: in the depth-first forest. Found by
exploring (u, v).
Back edge: (u, v), where u is a descendant of v (in
the depth-first tree).
Forward edge: (u, v), where v is a descendant of u,
but not a tree edge.
Cross edge: any other edge. Can go between
vertices in same depth-first tree or in different depth-
first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges. No forward or
cross edges.

8

Topological Sort

Topological sort of a DAG (directed
acyclic graph):

Linear ordering of all vertices in graph G
such that vertex u comes before vertex v if
edge (u, v) ∈ G

Real-world example: getting dressed

9

A spanning tree of a graph is just a subgraph that
contains all the vertices and is a tree.

A graph may have many spanning trees.

or or or

Some Spanning Trees from Graph AGraph A

Spanning Trees

All 16 of its Spanning TreesComplete Graph

Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of
minimum cost for that graph.

5

7

2

1

3

4

2

1

3

Complete Graph Minimum Spanning Tree

The Minimum Spanning Tree for a given graph is not unique.

Minimum Spanning Trees
Spanning Tree

A tree (i.e., connected, acyclic graph) which
contains all the vertices of the graph

Minimum Spanning Tree
Spanning tree with the minimum sum of edge
weights

Spanning forest
If a graph is not connected, then there is a
spanning tree for each connected component of
the graph

a

b c d

e

g g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Applications of MSTs

Find the least expensive way to connect a
set of cities, terminals, computers, etc.

Problem: Laying Telephone
Wire

Central office

Wiring: Naive Approach

Central office

Expensive!

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers

Another Example
Problem

A town has a set of houses
and a set of roads
A road connects two and only
two houses
A road connecting houses u and v has a repair
cost w(u, v)

Goal: Repair enough (and no more) roads so
that:

1. Everyone stays connected
i.e., can reach every house from all other houses

2. Total repair cost is minimum

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Minimum Spanning Trees
A connected, undirected graph:

Vertices = houses, Edges = roads

A weight w(u, v) on each edge (u, v) ∈ E

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Find T ⊆ E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)∈T w(u, v) is

minimized

Growing a MST – Generic Approach

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

• Grow a set A of edges from G
(initially empty)

• Incrementally add edges to A
such that they belong
to a MST

– An edge (u, v) is safe for A if and
only if A ∪ {(u, v)} is also a subset
of some MST

Idea: add only “safe” edges

Greedy MST Algorithms
Greedy algorithms

iteratively make “myopic” decisions – aimed
at locally optimal choice
but somehow everything works out to yield
the global optimum at the end – because, as
we grow the local solution, we are always
consistent with some global solution

While growing a partial MST, an edge not
currently in the tree is safe, if it can be
added while still being part of some MST

21

Generic MST algorithm
1. A ← ∅

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A ∪ {(u, v)}

5. return A

Key: how do we find safe edges?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V - S

Finding Safe Edges
Let’s look at edge (h, g)

Is it safe for A initially?

Later on:
Let S ⊂ V be any set of vertices that includes h but
not g (so that g is in V - S)

In any MST, there has to be one edge (at least)
that connects S with V - S

Why not choose the edge with minimum weight
(h,g)?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Definitions

A cut (S, V - S)
is a partition of vertices
into disjoint sets S and V - S

An edge crosses the cut
(S, V - S) if one endpoint is in S
and the other in V – S

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V- S
S

 V- S

Definitions (cont’d)
A cut respects a set A
of edges ⇔ no edge
in A crosses the cut
An edge is a light edge

crossing a cut ⇔ its weight is minimum
over all edges crossing the cut

Note that, for a given cut, there can be
multiple light edges crossing it

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V- S
S

 V- S

Theorem
Let A be a subset of some MST (i.e., T), (S, V - S) be a
cut that respects A, and (u, v) be a light edge crossing
(S, V-S). Then (u, v) is safe for A .

Proof:
Let T be an MST that includes A

edges in A are shaded
Case1: If T includes (u,v), then
it would be safe for A
Case2: Suppose T does not include

the edge (u, v)
Idea: construct another MST T’

that includes A ∪ {(u, v)}

u

v

S

V - S

u

v

S

V - S

Theorem - Proof
T contains a unique path p between u and v

Path p must cross the

cut (S, V - S) at least

once: let (x, y) be that edge

Let’s remove (x,y) ⇒ break

T into two components.

Adding (u, v) reconnects the components

T’ = T - {(x, y)} ∪ {(u, v)}

x

y

p

Theorem – Proof (cont.)
T’ = T - {(x, y)} ∪ {(u, v)}
Have to show that T’ is an MST:

(u, v) is a light edge
⇒ w(u, v) ≤ w(x, y)
w(T ’) = w(T) - w(x, y) + w(u, v)

≤ w(T)
Since T is a spanning tree
w(T) ≤ w(T ’) ⇒ T’ must be an MST as well

u

v

S

V - S

x

y

p

Theorem – Proof (cont.)
Need to show that (u, v) is safe for A:

i.e., (u, v) can be a part of an MST

A ⊆ T and (x, y) ∉ T ⇒

(x, y) ∉ A ⇒ A ⊆T’

A ∪ {(u, v)} ⊆ T’

Since T’ is an MST

⇒ (u, v) is safe for A

u

v

S

V - S

x

y

p

Prim’s Algorithm
The edges in set A always form a single tree

Start from an arbitrary “root”: VA = {a}

At each step:
Find a light edge crossing (VA, V - VA)

Add this edge to A

Repeat until the tree spans all vertices
a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Greedy approach

How to Find Light Edges
Quickly?

Use a priority queue Q:
Contains vertices not yet
included in the tree, i.e., (V – VA)

VA = {a}, Q = {b, c, d, e, f, g, h, i}

We associate a key with each vertex v:
key[v] = minimum weight of any edge (u, v)

connecting v to VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

w1

w2

Key[a]=min(w1,w2)

a

How to Find Light Edges Quickly?
(cont.)

After adding a new node to VA we update the weights of all
the nodes adjacent to it

e.g., after adding a to the tree, k[b]=4 and k[h]=8

Key of v is ∞ if v is not adjacent to any vertices in VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Example
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Q = {a, b, c, d, e, f, g, h, i}
VA = ∅
Extract-MIN(Q) ⇒ a

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [b] = 4 π [b] = a
key [h] = 8 π [h] = a

4 ∞ ∞ ∞ ∞ ∞ 8 ∞
Q = {b, c, d, e, f, g, h, i} VA = {a}
Extract-MIN(Q) ⇒ b

∞ ∞ ∞

∞ ∞

∞ ∞ ∞

∞ ∞

∞ ∞

∞ ∞

∞4

∞8

4 ∞

∞

8 ∞ ∞

8

∞

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [c] = 8 π [c] = b
key [h] = 8 π [h] = a - unchanged

8 ∞ ∞ ∞ ∞ 8 ∞
Q = {c, d, e, f, g, h, i} VA = {a, b}
Extract-MIN(Q) ⇒ c

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [d] = 7 π [d] = c
key [f] = 4 π [f] = c
key [i] = 2 π [i] = c

7 ∞ 4 ∞ 8 2
Q = {d, e, f, g, h, i} VA = {a, b, c}
Extract-MIN(Q) ⇒ i

∞

∞

4 ∞

∞

8 ∞ ∞

8

7

4

2

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [h] = 7 π [h] = i
key [g] = 6 π [g] = i

7 ∞ 4 6 8
Q = {d, e, f, g, h} VA = {a, b, c, i}
Extract-MIN(Q) ⇒ f

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [g] = 2 π [g] = f
key [d] = 7 π [d] = c unchanged

key [e] = 10 π [e] = f
7 10 2 8

Q = {d, e, g, h} VA = {a, b, c, i, f}
Extract-MIN(Q) ⇒ g

4 7

∞

8 ∞ 4

8

2

7 6
4 7

∞

7 6 4

8

2

2

10

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [h] = 1 π [h] = g
7 10 1

Q = {d, e, h} VA = {a, b, c, i, f, g}
Extract-MIN(Q) ⇒ h

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

7 10
Q = {d, e} VA = {a, b, c, i, f, g, h}
Extract-MIN(Q) ⇒ d

4 7

10

7 2 4

8

2

1
4 7

10

1 2 4

8

2

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [e] = 9 π [e] = f
9

Q = {e} VA = {a, b, c, i, f, g, h, d}
Extract-MIN(Q) ⇒ e
Q = ∅ VA = {a, b, c, i, f, g, h, d, e}

4 7

10

1 2 4

8

2 9

PRIM(V, E, w, r)
1. Q ← ∅

2. for each u ∈ V
3. do key[u] ← ∞
4. π[u] ← NIL
5. INSERT(Q, u)
6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0
7. while Q ≠ ∅

8. do u ← EXTRACT-MIN(Q)
9. for each v ∈ Adj[u]
10. do if v ∈ Q and w(u, v) < key[v]
11. then π[v] ← u
12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented
as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap
operations:
O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

Advanced: Using Fibonacci
Heaps (CLRS, Ch. 19)

• Depending on the heap implementation, running time
could be improved!

Prim’s Algorithm
Prim’s algorithm is a “greedy” algorithm

Greedy algorithms find solutions based on a
sequence of choices which are “locally”
optimal at each step.

Nevertheless, Prim’s greedy strategy
produces a globally optimum solution

See proof for generic approach

Another Instance of the
Generic Approach

A is a forest containing connected
components

Initially, each component is a single
vertex

Any safe edge merges two of
these components into one

Each component remains a tree

u

v

S

V - S

u

v

tree1

tree2

(instance 1)

(instance 2)

Kruskal’s Algorithm
How is it different from Prim’s algorithm?

Prim’s algorithm grows a single
tree at all times
Kruskal’s algorithm grows
multiple trees (i.e., a forest)
all at the same time.
Trees are merged together
using safe edges

Since an MST has exactly |V| - 1
edges, after |V| - 1 merges,
we have only one component

u

v

tree1

tree2

We add
edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Kruskal’s Algorithm
Start with each vertex being its
own connected component
Repeatedly merge two
components into one by
choosing a light edge that
connects them
Which components to consider
at each iteration?

Scan the set of edges in
monotonically increasing order by
weight (guarantees lightness)

Example
1. Add (h, g)
2. Add (c, i)
3. Add (g, f)
4. Add (a, b)
5. Add (c, f)
6. Ignore (i, g)
7. Add (c, d)
8. Ignore (i, h)
9. Add (a, h)
10. Ignore (b, c)
11. Add (d, e)
12. Ignore (e, f)
13. Ignore (b, h)
14. Ignore (d, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

1: (h, g)
2: (c, i), (g, f)
4: (a, b), (c, f)
6: (i, g)
7: (c, d), (i, h)

8: (a, h), (b, c)
9: (d, e)
10: (e, f)
11: (b, h)
14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}
{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

We add
edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Implementation of Kruskal’s
Algorithm

• Use a disjoint-set data
structure (see Ch. 21 in
CLRS) to determine
whether an edge
connects vertices in the
same or different
components

Operations on Disjoint Data Sets
MAKE-SET(u) – creates a new set whose only
member is u
FIND-SET(u) – returns a representative
element from the set that contains u

Any of the elements of the set that has a particular
property
E.g.: Su = {r, s, t, u}, the property is that the element
be the first one alphabetically

FIND-SET(u) = r FIND-SET(s) = r
FIND-SET has to return the same value for any
element of a given set

UNION(u, v) – unites the dynamic sets that
contain u and v, say Su and Sv

E.g.: Su = {r, s, t, u}, Sv = {v, x, y}

UNION (u, v) = {r, s, t, u, v, x, y}

Running time for FIND-SET and UNION
depends on specific implementation.

Can be shown to be amortized α(n)=o(lg n)
where α() is a very slowly growing function –
here we just need O(lg n) [union by rank]

Operations on Disjoint Data Sets

48

Quick Union: Tree Implementation
Each set a tree: Root serves as SetName

To Find, follow parent pointers to the root
Initially parent pointers set to self
To union(u,v), make v’s root point to u’s root

After union(4,5), union(6,7), union(4,6)

49

Analysis of Quick Union

Complexity in the worst case:
Union is O(1) but Find is O(n)
u Union, f Find : O(u + f n)
N operations: Θ(N2) total time

Initialize(int N)
parent = new int [N+1];
for (int e=1; e<=N; e++)
parent[e] = 0;

int Find(int e)
while (parent[e] != 0)
e = parent[e];

return e;

Union(int i, int j)
parent[j] = i;

1

2

3

N−1

N

Union(N-1, N);
Union(N-2, N-1);
Union(N-3, N-2);
…

Union(1, 2);
Find(1);
Find(2);
…
Find(N);

50

 union(u,v): make smaller tree point to bigger one’s root
 That is, make v’s root point to u’s root if v’s tree is smaller.
 Union(4,5), union(6,7), union(4,6) .

 Now perform union(3, 4). Smaller tree made the child node.

Smart Union (Union by Size)

51

Union by Size:
Link Small Tree to Large One

Initialize(int N)
setsize = new int[N+1];
parent = new int [N+1];
for (int e=1; e <= N; e++)
parent[e] = 0;
setsize[e] = 1;

int Find(int e)
while (parent[e] != 0)
e = parent[e];

return e;

Union(int i, int j)
if setsize[i] < setsize[j]
then
setsize[j] += setsize[i];
parent[i] = j;

else
setsize[i] += setsize[j];
parent[j] = i ;

Lemma: After n union
ops, the tree height is at
most log n.

52

 Find(u) takes time proportional to u’s depth in its tree.
 Show that if u’s depth is h, then its tree has at least 2h nodes.

 When union(u,v) performed, the depth of u only increases if its
root becomes the child of v.
 That only happens if v’s tree is larger than u’s tree.

 If u’s depth grows by 1, its (new) treeSize is > 2 * oldTreeSize
 Each increment in depth doubles the size of u’s tree.
 After n union operations, size is at most n, so depth at most log n.

 Theorem: With Union-By-Size, we can do find in O(log n) time
and union in O(1) time (assuming roots of u, v known).

 N-1 Unions, O(N) Finds: O(N log N) total time

Union by Size: Analysis

53

The Ultimate Union-Find: Path
Compression

int Find(int e)
if (parent[e] == 0)
return e

else
parent[e] = Find(parent[e])
return parent[e]

 While performing Find, direct all nodes on the path to the
root.

 Example: Find(14)

54

The Ultimate Union-Find: Path
Compression

int Find(int e)
if (parent[e] == 0)
return e

else
parent[e] = Find(parent[e])
return parent[e]

 Any single find can still be O(log N),
but later finds on the same path are faster

 Analysis of UF with Path Compression a tour de force [Robert
Tarjan]

 u Unions, f Finds: O(u + f α(f, u))
 α(f, u) is a functional inverse of Ackermann’s function
 N-1 Unions, O(N) Finds: “almost linear” total time

1. A ← ∅
2. for each vertex v ∈ V
3. do MAKE-SET(v)
4. sort E into non-decreasing order by w
5. for each (u, v) taken from the sorted list
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)}
8. UNION(u, v)
9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – depending on the
implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)

1. A ← ∅
2. for each vertex v ∈ V
3. do MAKE-SET(v)
4. sort E into non-decreasing order by w
5. for each (u, v) taken from the sorted list
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)}
8. UNION(u, v)
9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)
- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)

Kruskal’s Algorithm

Kruskal’s algorithm is also a “greedy”
algorithm
Kruskal’s greedy strategy produces a
globally optimum solution
Proof for generic approach
applies to Kruskal’s
algorithm too

u

v

S

V - S

x

y

Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many
“clouds” at once, but is more “parallel”.

Each iteration of the while-loop halves the number of connected
compontents in T.

The running time is O(E log V).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than V|-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Complete Graph

A
B
C
D
E
F
G
H

I
J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Trees of the Graph at Beginning
of Round 1

List of Trees

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

1

4

A

B

D

Tree A

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

1

4

A

B

D

Edge A-D

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

4

4

10

A

B C

D

J

Round 1 Tree B

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

4

4

10

A

B C

D

J

Round 1 Edge B-A

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

4

2 1

B C

E F

Tree C

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

4

2 1

B C

E F

Edge C-F

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

1

5 6

4A

B

D

H

J

Tree D

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

1

5 6

4A

B

D

H

J

Edge D-A

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

2

2

C

E

G

Tree E

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

2

2

C

E

G

Edge E-C

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

3

1

5

C

F

G

I

Tree F

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

3

1

5

C

F

G

I

Edge F-C

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

2 3

3

4

E F

G

I

J

Tree G

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

2 3

3

4

E F

G

I

J

Edge G-E

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

2

5

D

H

J

Tree H

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

2

5

D

H

J

Edge H-J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

3

5

3

F

G

I

J

Tree I

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

3

5

3

F

G

I

J

Edge I-G

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

3

4

2

6

10

B

D

G

H
I

J

Tree J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1

3

4

2

6

10

B

D

G

H
I

J

Edge J-H

A-D
B-A
C-F
D-A
E-C
F-C
G-E
H-J

I-G
J-H

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 1 Ends -
Add Edges

List of Edges to
Add

D-A-B
F-C-E-G-I
H-J

List of Trees

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Trees of the Graph at Beginning
of Round 2

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 2

4

1

2

2 1

3

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Tree D-A-B

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 2

4

1

2

2 1

3

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Edge B-C

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 2 Tree F-C-E-G-I

4

1

2 3

2 1

3

5

3

4

2

4

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 2 Edge I-J

4

1

2 3

2 1

3

5

3

4

2

4

A

B C

D

E F

G

H
I

J

1

2

2 1

3

3

4

2

5 6

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 2 Tree H-J

1

2

2 1

3

3

4

2

5 6

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Round 2 Edge J-I

B-C
I-J
J-I

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

List of Edges to
Add

Round 2 Ends -
Add Edges

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Minimum Spanning Tree Complete Graph

Clustering
Clustering. Given a set U of n objects labeled p1, …, pn,
classify into coherent groups.

Distance function. Numeric value specifying "closeness" of
two objects.

Fundamental problem. Divide into clusters so that points in
different clusters are far apart.

Routing in mobile ad hoc networks.
Identify patterns in gene expression.
Document categorization for web search.
Similarity searching in medical image databases
Skycat: cluster 109 sky objects into stars, quasars, galaxies.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

Clustering of Maximum Spacing
k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.
d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
d(pi, pj) ≥ 0 (nonnegativity)
d(pi, pj) = d(pj, pi) (symmetry)

Spacing. Min distance between any pair of points in different
clusters.
Clustering of maximum spacing. Given an integer k, find a k-
clustering of maximum spacing.

spacing

k = 4

Greedy Clustering Algorithm
Single-linkage k-clustering algorithm.

Form a graph on the vertex set U, corresponding to n clusters.
Find the closest pair of objects such that each object is in a
different cluster, and add an edge between them.
Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's
algorithm
(except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1
most expensive edges.

	CS161:�Design and Analysis of Algorithms�����Lecture 14�Leonidas Guibas
	Outline
	Representation of Graphs
	Graph-Searching Algorithms
	Breadth-First Search (BFS)
	Depth-First Search (DFS)
	Graph Search Algorithms
	DFS Classification of Edges
	Topological Sort
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Minimum Spanning Trees
	Applications of MSTs
	Problem: Laying Telephone Wire
	Wiring: Naive Approach
	Wiring: Better Approach
	Another Example
	Minimum Spanning Trees
	Growing a MST – Generic Approach
	Greedy MST Algorithms
	Generic MST algorithm
	Finding Safe Edges
	Definitions
	Definitions (cont’d)
	Theorem
	Theorem - Proof
	Theorem – Proof (cont.)
	Theorem – Proof (cont.)
	Prim’s Algorithm
	How to Find Light Edges Quickly?
	How to Find Light Edges Quickly? (cont.)
	Example
	Example
	Example
	Example
	Example
	PRIM(V, E, w, r)
	Advanced: Using Fibonacci Heaps (CLRS, Ch. 19)
	Prim’s Algorithm
	Another Instance of the� Generic Approach
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Example
	Implementation of Kruskal’s Algorithm
	Operations on Disjoint Data Sets
	Slide Number 47
	Quick Union: Tree Implementation
	Analysis of Quick Union
	Smart Union (Union by Size)
	Union by Size: �Link Small Tree to Large One
	Union by Size: Analysis
	The Ultimate Union-Find: Path Compression
	The Ultimate Union-Find: Path Compression
	KRUSKAL(V, E, w)
	KRUSKAL(V, E, w)
	Kruskal’s Algorithm
	Baruvka’s Algorithm
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Clustering
	Clustering of Maximum Spacing
	Greedy Clustering Algorithm

