CS161:
 Design and Analysis of Algorithms

Lecture 15 Leonidas Guibas

Outline

- Last lecture: Minimum spanning tree algorithms
*Today: Single source shortest path algorithms
*shortest path properties; edge relaxation
- Shorest paths on DAGs
- Dijkstra's algorithm silues modieded tom
-Bellman-Ford algorithm

Minimum Spanning Trees

- Spanning Tree
- A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph
- Minimum Spanning Tree
-Spanning tree with the minimum sum of weights

- Spanning forest
- If a graph is not connected, then there is a spanning tree for each connected component of the graph

Greedy MST Algorithms

Greedy algorithms
*iteratively make "myopic" decisions - aimed at locally optimal choice
-but somehow everything works out to yield the global optimum at the end

- While growing a partial MST, an edge not currently in the tree is safe, if it can be added while still being part of some MST

Generic MST algorithm

1. $\mathrm{A} \leftarrow \varnothing$
2. while A is not a spanning tree
3. do find an edge (u, v) that is safe for A
4. $A \leftarrow A \cup\{(u, v)\}$
5. return A

Key: how do we find safe edges?

Prim's Algorithm

- The edges in set A always form a single tree
- Start from an arbitrary "root": $\mathrm{V}_{\mathrm{A}}=\{\mathrm{a}\}$
- At each step:
- Find a light edge crossing $\left(\mathrm{V}_{\mathrm{A}}, \mathrm{V}-\mathrm{V}_{\mathrm{A}}\right)$
- Add this edge to A
- Repeat until the tree spans all vertices

Greedy approach

Kruskal's Algorithm

- Start with each vertex being its own component
- Repeatedly merge two components into one by choosing the light edge that connects them
- Which components to consider at each iteration?
- Scan the set of edges in monotonically increasing order by weight (guarantees lightness)

Baruvka's Algorithm

- Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once, but is more "parallel".

```
Algorithm BaruvkaMST(G)
    \(\boldsymbol{T} \leftarrow V\) \{just the vertices of \(\boldsymbol{G}\}\)
    while \(T\) has fewer than \(\mathrm{V} \mid-1\) edges do
        for each connected component \(\boldsymbol{C}\) in \(\boldsymbol{T}\) do
            Let edge \(\boldsymbol{e}\) be the smallest-weight edge from \(\boldsymbol{C}\) to another component in \(\boldsymbol{T}\).
            if \(\boldsymbol{e}\) is not already in \(\boldsymbol{T}\) then
                Add edge \(\boldsymbol{e}\) to \(\boldsymbol{T}\)
    return \(T\)
```

- Each iteration of the while-loop halves the number of connected compontents in T .
- The running time of all three algorithms is basically $\mathrm{O}(\mathrm{E} \log \mathrm{V})$.

Introduction: Shortest Paths

Generalization of simple BFS to handle weighted graphs

- Direct Graph G = (V, E), edge weight function $\mathrm{w}: E \rightarrow \boldsymbol{R}$
- In simple BFS, we have $w(e)=1$ for all $e \in E$

Weight of path $p=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$ is

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

Shortest Path

Shortest Path = Path of minimum weight between two vertices u and v
$\delta(u, v)= \begin{cases}\min \{\mathrm{w}(\mathrm{p}): \mathrm{u} \stackrel{\mathrm{p}}{\sim} \mathrm{v}\} ; & \text { if there is a path from u to } \mathrm{v}, \\ \infty & \text { otherwise. }\end{cases}$
Distance from u to $v=$ length of shortest path from u to v

Shortest-Path Variants

- Shortest-Path problems
- Single-source shortest-paths problem: Find the shortest path from s to each vertex v. (e.g. BFS)
- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex t from each vertex v.
- Single-pair shortest-path problem: Find a shortest path from u to v for given vertices u and v.
* All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v.

Optimal Substructure Property

Theorem: Subpaths of shortest paths are also shortest paths

- Let $\mathrm{P}_{1 \mathrm{k}}=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ be a shortest path from v_{1} to v_{k}
- Let $\mathrm{P}_{\mathrm{ij}}=\left\langle v_{i}, \ldots, v_{j}\right\rangle$ be subpath of P_{ik} from v_{i} to v_{j} for any $1 \leq i \leq j \leq k$
- Then P_{ij} is itself a shortest path from v_{i} to v_{j}

Optimal Substructure Property

Proof: By cut and paste

- If some subpath were not a shortest path
- We could substitute a shorter subpath in the original path to create a shorter total path
- Hence, the original path would not be shortest path

Negative Weight Cycles

Definition:

- $\delta(u, v)=$ weight of a shortest path(s) from u to v

Not always well defined:

- negative-weight cycle in graph: Some shortest paths may not be defined
- argument:can always get a shorter path by going around the negative cycle again

Negative-Weight Edges

- No problem, as long as no negative-weight cycles are reachable from the source
- Otherwise, we can just keep going around it, and get $w(s, v)=-\infty$ for all v on the cycle.

Triangle Inequality

Lemma 1: for a given vertex $s \rightsquigarrow \boldsymbol{V}$ and for every edge (u, v) ϵE,

- $\delta(\mathrm{s}, v) \leq \delta(\mathrm{s}, u)+\mathrm{w}(\mathrm{u}, \mathrm{v})$

Proof: shortest path $s \leadsto v$ is not longer than any other path.

- in particular the path that takes the shortest path $s \leadsto u$ and then takes edge (u, v)

Edge Relaxation

- Maintain d[v] for each $v \rightsquigarrow V$
- $\mathrm{d}[v]$ is called a shortest-path weight estimate and is an upper bound on $\delta(s, v)$

$$
\begin{gathered}
\operatorname{INIT}(G, s) \\
\text { for each } v \in V \text { do } \\
\mathrm{d}[v] \leftarrow \infty \\
\pi[v] \leftarrow \mathrm{NIL} \leftarrow \\
\mathrm{~d}[s] \leftarrow 0
\end{gathered}
$$

as before, predecessor on shortest path from s to v

Edge Relaxation

$$
\begin{aligned}
& \text { RELAX (u, v) } \\
& \text { if } \mathrm{d}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \text { then } \\
& \mathrm{d}[\mathrm{v}] \leftarrow \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \pi[v] \leftarrow u
\end{aligned}
$$

Properties of Relaxation

Shortest path algorithms work by relaxing edges. They differ in
> how many times they relax each edge, and
$>$ the order in which they relax edges

Question: How many times each edge is relaxed in BFS?
Answer: Only once!

Properties of Relaxation

Given:

- An edge weighted directed graph $G=(V, E)$ with edge weight function ($w: E \rightarrow R$) and a source vertex s ϵV
- G is initialized by INIT(G, s)

Lemma 2: Immediately after relaxing edge (u, v), $\mathrm{d}[\mathrm{v}] \leq \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})$
Lemma 3: For any sequence of relaxation steps over E,
(a) the invariant $\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})$ is maintained
(b) once $\mathrm{d}[\mathrm{v}]$ achieves its lower bound, it never changes.

Properties of Relaxation

Proof of (a): certainly true after
$\operatorname{INIT}(\mathrm{G}, \mathrm{s}): \mathrm{d}[\mathrm{s}]=0=\delta(\mathrm{s}, \mathrm{s}): \mathrm{d}[\mathrm{v}]=\infty \geq \delta(\mathrm{s}, \mathrm{v}) \forall v \in \mathrm{~V}-\{\mathrm{s}\}$ Proof by contradiction:Let v be the first vertex for which
$\operatorname{RELAX}(u, v)$ causes $\mathrm{d}[v]<\delta(s, v)$
After RELAX(u,v) we have

$$
\text { - } \quad \begin{aligned}
\mathrm{d}[u]+\mathrm{w}(u, v) & =\mathrm{d}[v]<\delta(\mathrm{s}, v) \\
& \leq \delta(\mathrm{s}, u)+\mathrm{w}(u, v) \text { by } L 2
\end{aligned}
$$

- $\mathrm{d}[u]+\mathrm{w}(u, v)<\delta(\mathrm{s}, u)+\mathrm{w}(u, v)=>\mathrm{d}[u]<\delta(\mathrm{s}, u)$ contradicting the assumption

Properties of Relaxation

Proof of (b):
$\mathrm{d}[v]$ cannot decrease after achieving its lower bound; because $\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})$
$\mathrm{d}[\mathrm{v}]$ cannot increase since relaxations don't increase d values.

Properties of Relaxation

C1 : For any vertex v which is not reachable from s, we have the invariant $\mathrm{d}[v]=\delta(s, v)$ that is maintained over any sequence of relaxations

Proof: By $L 3(b)$, we always have $\infty=\delta(s, v) \leq d[v]$

$$
\Rightarrow \mathrm{d}[v]=\infty=\delta(\mathrm{s}, \mathrm{v})
$$

Properties of Relaxation

Lemma 4: Let $\mathrm{s} \sim u \rightarrow v$ be a shortest path from s to v for some $u, v \rightsquigarrow V$

- Suppose that a sequence of relaxations including RELAX(u,v) were performed on E
- If $\mathrm{d}[u]=\delta(s, u)$ at any time prior to $\operatorname{RELAX}(u, v)$
- then $\mathrm{d}[v]=\delta(s, v)$ at all times after $\operatorname{RELAX}(u, v)$

Properties of Relaxation

Proof: If $\mathrm{d}[u]=\delta(s, v)$ prior to $\operatorname{RELAX}(u, v)$ $\mathrm{d}[u]=\delta(s, v)$ hold thereafter by $L 3(b)$

After $\operatorname{RELAX}(u, v)$, we have $\mathrm{d}[v] \leq \mathrm{d}[u]+\mathrm{w}(u, v)$ by L2

$$
\begin{aligned}
& =\delta(s, u)+w(u, v) \text { hypothesis } \\
& =\delta(s, v) \text { by optimal subst.property }
\end{aligned}
$$

Thus $\mathrm{d}[v] \leq \delta(s, v)$
But $\mathrm{d}[v] \geq \delta(s, v)$ by $L 3(a)=>\mathrm{d}[v]=\delta(s, v)$
Q.E.D.

Single-Source Shortest Paths in DAGs

- Shortest paths are always well-defined in dags
> no cycles => no negative-weight cycles even if there are negative-weight edges

Idea: If we were lucky
> To process vertices on each shortest path from left to right, we would be done in 1 pass due to $L 4$

Single-Source Shortest Paths in DAGs

In a DAG:

- Every path is a subsequence of the topologically sorted vertex order
If we do topological sort and process edges in the order of their origins
- We will process each path in forward order
> Never relax edges out of a vertex until have processed all edges into the vertex
Thus, just one pass is sufficient

Single-Source Shortest Paths in DAGs

DAG-SHORTEST PATHS(G, s)
TOPOLOGICALLY-SORT the vertices of G
INIT(G, s)
for each vertex u taken in topologically sorted order do
for each $v \rightsquigarrow \operatorname{Adj}[u]$ do
RELAX(u, v)

Example

Single-Source Shortest Paths in DAGs

Runs in linear time: $\Theta(\mathrm{V}+\mathrm{E})$
$>$ topological sort: $\Theta(\mathrm{V}+\mathrm{E})$
$>$ initialization: $\Theta(\mathrm{V}+\mathrm{E})$
> for-loop: $\Theta(\mathrm{V}+\mathrm{E})$
each vertex processed exactly once
=> each edge processed exactly once: $\Theta(V+E)$

Single-Source Shortest Paths in DAGs

Thm: (Correctness of DAG-SHORTEST-PATHS):

At termination of DAG-SHORTEST-PATHS procedure
$\mathrm{d}[v]=\delta(s, v)$ for all $v \rightsquigarrow V$

Single-Source Shortest Paths in DAGs

Proof: If $v \in \mathrm{R}_{\mathrm{s}}$, then $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v}) \quad \forall v \rightsquigarrow V$

$$
\begin{aligned}
& \text { If } \mathrm{v} \in \mathrm{R}_{\mathrm{s}} \text {, so } \exists \text { a shortest path } \\
& \mathrm{p}=\left\langle\mathrm{v}_{0}=\mathrm{s}, \mathrm{v}_{1}, v_{2}, \ldots, v_{\mathrm{k}}=\mathrm{v}\right\rangle
\end{aligned}
$$

- Because we process vertices in topologically sorted order
> Edges on p are relaxed in the order

$$
\left(u_{0}, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{k-1}, u_{k}\right)
$$

- A simple induction on k using $L 4$ shows that
> $\mathrm{d}\left[v_{\mathrm{i}}\right]=\delta(\mathrm{s}, \mathrm{v})$ at termination for $\mathrm{i}=0,1,2, \ldots, \mathrm{k}$

Dijkstra's Algorithm For Shortest Paths

Non-negative edge weights

Like BFS: If all edge weights are equal, then use BFS, otherwise use this algorithm

Use $\mathrm{Q}=$ priority queue keyed on $\mathrm{d}[\mathrm{v}]$ values (note: BFS uses FIFO)

Dijkstra's Algorithm For Shortest Paths

DIJKSTRA(G, s)
INIT(G, s)
$\mathrm{S} \leftarrow \varnothing \quad>$ set of discovered nodes
$\mathrm{Q} \leftarrow \mathrm{V}[\mathrm{G}]$
while $Q \neq \varnothing$ do $\mathrm{u} \leftarrow E X T R A C T-M I N(\mathrm{Q})$
$S \leftarrow S U\{u\}$
for each $v \rightsquigarrow \operatorname{Adj}[u] d o$ RELAX $(\mathrm{u}, \mathrm{v})>$ may cause
> DECREASE-KEY(Q, v, d[v])

Example

Example

Example

Example

Example

Example

Dijkstra's Algorithm For Shortest Paths

Observe :

- Each vertex is extracted from Q and inserted into S exactly once
Each edge is relaxed exactly once
$S=$ set of vertices whose final shortest paths have already been determined

$$
>\quad \text { i.e. }, S=\{v \rightsquigarrow V: d[v]=\delta(s, v) \neq \infty\}
$$

Dijkstra's Algorithm For Shortest Paths

- Similar to BFS algorithm: S corresponds to the set of black vertices in BFS which have their correct breadth-first distances already computed

Greedy strategy: Always chooses the closest (lightest) vertex in Q = V-S to insert into S

- Relaxation may reset d[v] values thus updating Q = DECREASE-KEY operation.

Dijkstra's Algorithm For Shortest Paths

Similar to Prim's MST algorithm: Both algorithms use a priority queue to find the lightest vertex outside a given set S

Insert this vertex into the set

Adjust weights of remaining adjacent vertices outside the set accordingly

Correctness

Theorem : Upon termination, $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$ for all u in V (assuming non-negative weights).

Proof:

By Lemma 3(b), once $d[u]=\delta(s, u)$ holds, it continues to hold.
We prove: For each u in $V, d[u]=\delta(s, u)$ when u is inserted in S.
Suppose not. Let u be the first vertex such that $d[u] \neq \delta(s, u)$ when inserted in S.

Note that $\mathrm{d}[\mathrm{s}]=\delta(\mathrm{s}, \mathrm{s})=0$ when s is inserted, $\mathrm{so} \mathrm{u} \neq \mathrm{s}$.
$\Rightarrow S \neq \varnothing$ just before u is inserted (in fact, $s \in S$).

Proof (Continued)

Note that there exists a path from s to u, for otherwise $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})=\infty$ by Corollary 24.12.
\Rightarrow there exists a SP from s to u. Say SP looks like this:

Proof (Continued)

Claim: $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})$ when u is inserted into S .
We had $d[x]=\delta(s, x)$ when x was inserted into S.
Edge (x, y) was relaxed at that time.
By Lemma 3(b), this implies the claim.

Now, we have: $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})$, by Claim.
$\leq \delta(\mathrm{s}, \mathrm{u})$, nonnegative edge weights.
$\leq \mathrm{d}[\mathrm{u}] \quad$, by Lemma 3(a).

Because u was added to S before $\mathrm{y}, \mathrm{d}[\mathrm{u}] \leq \mathrm{d}[\mathrm{y}]$.
Thus, $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})=\delta(\mathrm{s}, \mathrm{u})=\mathrm{d}[\mathrm{u}]$.
Contradiction.

Computing Paths (not just Distances)

- Maintain for each node v a predecessor node $\quad \pi(v)$
- $\pi(v)$ is initialized to be null
*Whenever an edge (u, v) is relaxed such that $d(v)$ improves, then $\pi(v)$ can be set to be u
* Paths can be generated from this data structure

Running Time Analysis of Dijkstra's Algorithm

Look at different Q implementation, as we did for Prim's algorithm
Initialization (INIT) : $\Theta(\mathrm{V})$ time
While-loop:

- EXTRACT-MIN executed |V| times
- DECREASE-KEY executed |E| times

Time $\mathrm{T}=|\mathrm{V}| \times \mathrm{T}_{\mathrm{E}-\mathrm{MIN}}+|\mathrm{E}| \times \mathrm{T}_{\mathrm{D} \text {-KEY }}$

Running Time Analysis of Dijkstra's Algorithm

* Look at different Q implementation, as did for Prim's algorithm

\qquad
Linear
Unsorted
$\mathrm{O}(\mathrm{V})$
$\mathrm{O}(1)$
$\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)$
Array:
- Binary Heap:

Fibonacci heap:
$\mathrm{O}(\lg \mathrm{V}) \quad \mathrm{O}(\log \mathrm{V}) \quad \mathrm{O}(\mathrm{Vlg} \mathrm{V}+E \lg \mathrm{~V})=\mathrm{O}(\mathrm{Elg} \mathrm{V})$
$\mathrm{O}(\mathrm{lg} \mathrm{V}) \quad \mathrm{O}(1) \quad \mathrm{O}(\mathrm{Vlg} \mathrm{V}+\mathrm{E})$
(Amortized) (Amortized) (Worst Case)

Running Time Analysis of Dijkstra's Algorithm

$Q=$ unsorted-linear array:

- Scan the whole array for EXTRACT-MIN
- Joint index for DECREASE-KEY

Q = Fibonacci heap: note advantage of amortized analysis

- Can use amortized Fibonacci heap bounds per operation in the analysis as if they were worst-case bound
- Still get (real) worst-case bounds on aggregate running time

Bellman-Ford Algorithm for Single Source Shortest Paths

- More general than Dijkstra's algorithm:
> Allows edge-weights can be negative
- As a by-product, it detects the existence of negativeweight cycle(s) reachable from s .

Bellman-Ford Algorithm for Single Source Shortest Paths

BELMAN-FORD(G, s)
INIT(G, s)
for $\mathrm{i} \leftarrow 1$ to $|\mathrm{V}|-1$ do
for each edge $(u, v) \in E$ do

$$
\operatorname{RELAX}(\mathrm{u}, \mathrm{v})
$$

for each edge ($u, v) \in E$ do if $d[v]>d[u]+w(u, v)$ then
return FALSE > neg-weight cycle
return TRUE

Bellman-Ford Algorithm for Single Source Shortest Paths

Observe:

- First nested for-loop performs |V|-1 relaxation passes; relax every edge at each pass
- Last for-loop checks the existence of a negative-weight cycle reachable from s

Bellman-Ford Algorithm for Single Source Shortest Paths

- Running time $=\mathrm{O}(\mathrm{V} \mathrm{E})$

Constants are good; it's simple, short code(very practical)

- Example: Run algorithm on a sample graph with no negative weight cycles.

Example

Example

Example

Example

Example

Bellman-Ford Algorithm for Single Source Shortest Paths

- Converges in just 2 relaxation passes
- Values you get on each pass \& how early converges depend on edge process order
- d value of a vertex may be updated more than once in a pass

Bellman-Ford Correctness

Lemma: Assuming no negative-weight cycles reachable from $\mathrm{s}, \mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ holds upon termination for all vertices v reachable from s .

Proof:

Consider a SP p , where $\mathrm{p}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right.$, where $\mathrm{v}_{0}=\mathrm{s}$ and $\mathrm{v}_{\mathrm{k}}=\mathrm{v}$.
Assume $\mathrm{k} \leq|\mathrm{V}|-1$, otherwise p has a cycle.
Claim: $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)$ holds after the $\mathrm{i}^{\text {th }}$ pass over edges.
Proof follows by induction on i.
By Lemma 3(b), once $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)$ holds, it continues to hold.

Correctness

Claim: Algorithm returns the correct value.
(Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v):

$$
\begin{array}{rlrl}
\mathrm{d}[\mathrm{v}] & =\delta(\mathrm{s}, \mathrm{v}) & & , \\
& \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})=\infty \text { otherwise. } \\
& =\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) &
\end{array}
$$

So, algorithm returns true.

Case 2

Case 2: There exists a reachable negative-weight cycle $\mathrm{c}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right.$, where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$.

We have $\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)<0$.
Suppose algorithm returns true. Then, $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{k}$. (because Relax didn't change any $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]$). Thus,

$$
\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{~d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{~d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)
$$

But, $\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]$.
Can show no $\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]$ is infinite. Hence, $0 \leq \sum_{\mathrm{i}=1, \ldots, \mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$.
Contradicts (*). Thus, algorithm returns false.

