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Outline

Last lecture: Minimum spanning tree 
algorithms

Today: Single source shortest path 
algorithms

shortest path properties; edge relaxation
Shorest paths on DAGs
Dijkstra’s algorithm
Bellman-Ford algorithm

Slides modified from
• http://www.cs.bilkent.edu.tr/~atat/502/SingleSourceSP.ppt
• http://www.cs.unc.edu/.../comp122/
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Minimum Spanning Trees
Spanning Tree

A tree (i.e., connected, acyclic graph) which 
contains all the vertices of the graph

Minimum Spanning Tree
Spanning tree with the minimum sum of 
weights

Spanning forest
If a graph is not connected, then there is a 
spanning tree for each connected component of 
the graph
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Greedy MST Algorithms

Greedy algorithms
iteratively make “myopic” decisions – aimed 
at locally optimal choice
but somehow everything works out to yield 
the global optimum at the end

While growing a partial MST, an edge not 
currently in the tree is safe, if it can be 
added while still being part of some MST
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Generic MST algorithm
1. A ←  ∅

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A ∪ {(u, v)} 

5. return A

Key: how do we find safe edges?
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Prim’s Algorithm
The edges in set A always form a single tree

Start from an arbitrary “root”: VA = {a}

At each step:
Find a light edge crossing (VA, V - VA)

Add this edge to A

Repeat until the tree spans all vertices
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We add
edge (c, f)
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Kruskal’s Algorithm
Start with each vertex being its 
own component
Repeatedly merge two 
components into one by 
choosing the light edge that 
connects them
Which components to consider 
at each iteration?

Scan the set of edges in 
monotonically increasing order by 
weight (guarantees lightness)
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Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many 
“clouds” at once, but is more “parallel”.

Each iteration of the while-loop halves the number of connected 
compontents in T.

The running time of all three algorithms is basically O(E log V).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than V|-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T
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Introduction: Shortest Paths

Generalization of simple BFS to handle weighted 
graphs       
Direct Graph G = ( V, E ), edge weight function
w : E → R
In simple BFS, we have w(e)=1 for all e ϵ E

Weight of path p = v1 → v2 → … → vk is
1
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Shortest Path
Shortest Path = Path of minimum weight 

between two vertices u and v

δ(u,v)=

Distance from u to v = length of shortest 
path from u to v

min{w(p) : u      v};  if there is a path from u to v,

∞ otherwise.

p
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Shortest-Path Variants

Shortest-Path problems

Single-source shortest-paths problem: Find the shortest path 
from s to each vertex v. (e.g. BFS)

Single-destination shortest-paths problem: Find a shortest path 
to a given destination vertex t from each vertex v. 

Single-pair shortest-path problem: Find a shortest path from u
to v for given vertices u and v. 

All-pairs shortest-paths problem: Find a shortest path from u to 
v for every pair of vertices u and v. 
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Optimal Substructure Property

Theorem: Subpaths of shortest paths are also shortest 
paths

Let P1k = <v1, ... ,vk > be a shortest path from v1 to vk

Let Pij = <vi, ... ,vj > be subpath of P1k from vi to vj

for any  1 ≤ i ≤ j ≤k
Then Pij is itself a shortest path from vi to vj
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Proof: By cut and paste

If some subpath were not a shortest path
We could substitute a shorter subpath in the original 
path to create a shorter total path
Hence, the original path would not be shortest path

v2
v3 v4 v5 v6 v7

Optimal Substructure Property

v1v0
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Definition:
δ(u,v) = weight of a shortest path(s) from u to v

Not always well defined:
negative-weight cycle in graph: Some shortest paths 
may not be defined
argument:can always get a shorter path by going 
around the negative cycle again

s v

cycle
< 0

Negative Weight Cycles
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Negative-Weight Edges

No problem, as long as no negative-weight cycles are 
reachable from the source
Otherwise, we can just keep going around it, and get 
w(s, v) = −∞ for all v on the cycle.
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Triangle Inequality

Lemma 1: for a given vertex s  V and for every edge (u,v) 
ϵ E,
δ(s,v) ≤ δ(s,u) + w(u,v)

Proof: shortest path s     v is not longer than any other path.
in particular the path that takes the shortest path s    u
and then takes edge (u,v) 

s

u v
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Edge Relaxation

Maintain d[v] for each v  V 
d[v] is called a shortest-path weight estimate
and is an upper bound on δ(s,v)

INIT(G, s)
for each v ∈ V do

d[v] ← ∞
π[v] ← NIL

d[s] ← 0

17
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Edge Relaxation
RELAX(u, v)

if d[v] > d[u]+w(u,v) then
d[v] ← d[u]+w(u,v)
π[v] ← u
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Properties of Relaxation

Shortest path algorithms work by relaxing edges. They 
differ in 

 how many times they relax each edge, and
 the order in which they relax edges

Question: How many times each edge is relaxed in BFS?
Answer: Only once!
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Properties of Relaxation

Given:
An edge weighted directed graph G = ( V, E ) with
edge weight function (w:E → R) and a source vertex s
ϵ V
G is initialized by INIT( G , s )

Lemma 2: Immediately after relaxing edge (u,v),
d[v] ≤ d[u] +w(u,v)

Lemma 3: For any sequence of relaxation steps over E,
(a) the invariant d[v] ≥ δ(s,v) is maintained 
(b) once d[v] achieves its lower bound, it never 
changes.
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Properties of Relaxation

Proof of (a): certainly true after 
INIT(G,s) : d[s] = 0 = δ(s,s):d[v] = ∞ ≥ δ(s,v) ∀ v∈ V-{s}

Proof by contradiction:Let v be the first vertex for 
which
RELAX(u, v) causes d[v] < δ(s, v)
After RELAX(u , v) we have 

• d[u] + w(u,v) = d[v] < δ(s, v)
≤ δ(s, u) + w(u,v) by L2

• d[u]+w(u,v) < δ(s, u) + w(u, v)  => d[u] < δ(s, u) 
contradicting the assumption
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Properties of Relaxation

Proof of (b):

d[v] cannot decrease after achieving its lower bound; 
because d[v] ≥ δ(s,v) 

d[v] cannot increase since relaxations don’t increase 
d values.

22



Properties of Relaxation

C1 : For any vertex v which is not reachable from s, we 
have the invariant d[v] = δ(s,v) that is maintained 
over any sequence of relaxations

Proof: By L3(b), we always have ∞ = δ(s,v) ≤ d[v] 
=> d[v] = ∞ = δ(s,v) 
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Properties of Relaxation

Lemma 4: Let s    u →v be a shortest path from s to v 
for some u,v  V 

• Suppose that a sequence of relaxations including
RELAX(u,v) were performed on E

• If d[u] = δ(s, u) at any time prior to RELAX(u, v)
• then d[v] = δ(s, v) at all times after RELAX(u, v)
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Properties of Relaxation

Proof: If d[u] = δ(s, v) prior to RELAX(u, v) 
d[u] = δ(s, v) hold thereafter by L3(b)

After RELAX(u,v), we have d[v] ≤ d[u] + w(u, v) by 
L2

= δ(s, u) + w(u, v) hypothesis
= δ(s, v) by optimal subst.property

Thus d[v] ≤ δ(s, v) 
But d[v] ≥ δ(s, v) by L3(a) => d[v] = δ(s, v) 

Q.E.D.
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Single-Source Shortest Paths in 
DAGs

Shortest paths are always well-defined in dags
 no cycles => no negative-weight cycles even if 

there are negative-weight edges

Idea: If we were lucky
 To process vertices on each shortest path from 

left to  right, we would be done in 1 pass due 
to  L4
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Single-Source Shortest Paths in 
DAGs

In a DAG:
Every path is a subsequence of the topologically 
sorted vertex order
If we do topological sort and process edges in the
order of their origins
We will process each path in forward order
 Never relax edges out of a vertex until have 

processed all edges into the vertex
Thus, just one pass is sufficient

27



Single-Source Shortest Paths in 
DAGs

DAG-SHORTEST PATHS(G, s)
TOPOLOGICALLY-SORT the vertices of G
INIT(G, s)
for each vertex u taken in topologically sorted 
order do

for each v  Adj[u] do
RELAX(u, v) 
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Single-Source Shortest Paths in 
DAGs

Runs in linear time: Θ(V+E)

 topological sort: Θ(V+E)

 initialization: Θ(V+E)

 for-loop: Θ(V+E)
each vertex processed exactly once 

=> each edge processed exactly once: Θ(V+E)
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Single-Source Shortest Paths in 
DAGs

Thm: (Correctness of DAG-SHORTEST-PATHS):

At termination of DAG-SHORTEST-PATHS
procedure 
d[v] = δ(s, v) for all v  V
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Single-Source Shortest Paths in 
DAGs

Proof: If v ϵ Rs , then d[v] = δ(s, v) 

If v ϵ Rs , so a shortest path 
p = <v0=s, v1, v2, …,vk=v>
Because we process vertices in topologically sorted 
order 
 Edges on p are relaxed in the order 

(u0, u1),(u1, u2),...,(uk-1, uk)
A simple induction on k using L4 shows that 
 d[vi] = δ(s, v) at termination for i = 0,1,2,...,k

v  V
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Non-negative edge weights

Like BFS: If all edge weights are equal, then use 
BFS, otherwise use this algorithm 

Use Q = priority queue keyed on d[v] values
(note: BFS uses FIFO)

Dijkstra’s Algorithm For Shortest 
Paths
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DIJKSTRA(G, s)
INIT(G, s)

S←Ø > set of discovered nodes
Q←V[G]
while Q ≠Ø do 

u←EXTRACT-MIN(Q)
S←S U {u}
for each v  Adj[u] do

RELAX(u, v) > may cause
> DECREASE-KEY(Q, v, d[v])

Dijkstra’s Algorithm For Shortest 
Paths
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Observe :

Each vertex is extracted from Q and inserted into S
exactly once
Each edge is relaxed exactly once
S = set of vertices whose final shortest paths have 
already been determined 
 i.e. , S = {v  V: d[v] = δ(s, v) ≠ ∞ }   

Dijkstra’s Algorithm For Shortest 
Paths
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Similar to BFS algorithm: S corresponds to the set of 
black vertices in BFS which have their correct 
breadth-first distances already computed 

Greedy strategy: Always chooses the closest
(lightest) vertex in Q = V-S to insert into S

Relaxation may reset d[v] values thus updating 
Q = DECREASE-KEY operation.

Dijkstra’s Algorithm For Shortest 
Paths
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Similar to Prim’s MST algorithm: Both algorithms
use a priority queue to find the lightest vertex 
outside a given set S

Insert this vertex into the set

Adjust weights of remaining adjacent vertices 
outside the set accordingly

Dijkstra’s Algorithm For Shortest 
Paths
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Correctness
Theorem : Upon termination, d[u] = δ(s, u) for all u in V
(assuming non-negative weights).

Proof:

By Lemma 3(b), once d[u] = δ(s, u) holds, it continues to hold.

We prove: For each u in V, d[u] = δ(s, u) when u is inserted in S.

Suppose not.  Let u be the first vertex such that d[u] ≠ δ(s, u) when
inserted in S.

Note that d[s] = δ(s, s) = 0 when s is inserted, so u ≠ s.

⇒ S ≠ ∅ just before u is inserted (in fact, s ∈ S).



Proof (Continued)
Note that there exists a path from s to u, for otherwise 
d[u] = δ(s, u) = ∞ by Corollary 24.12.

⇒ there exists a SP from s to u.   Say SP looks like this:

x
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y

u

S

p1

p2



Proof (Continued)
Claim: d[y] = δ(s, y) when u is inserted into S.

We had d[x] = δ(s, x) when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 3(b), this implies the claim.

Now, we have: d[y] = δ(s, y)    , by Claim.
≤ δ(s, u)    , nonnegative edge weights.
≤ d[u]        , by Lemma 3(a).

Because u was added to S before y, d[u] ≤ d[y].

Thus, d[y] = δ(s, y) = δ(s, u) = d[u].

Contradiction.



Computing Paths (not just 
Distances)

Maintain for each node v a predecessor 
node π(v)
π(v) is initialized to be null
Whenever an edge (u,v) is relaxed such 
that d(v) improves, then π(v) can be set 
to be u
Paths can be generated from this data 
structure



Look at different Q implementation, as we did for 
Prim’s algorithm
Initialization (INIT) : Θ(V) time
While-loop: 

• EXTRACT-MIN executed |V| times
• DECREASE-KEY executed |E| times

Time T = |V| x TE-MIN +|E| x TD-KEY

Running Time Analysis of 
Dijkstra’s Algorithm
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Look at different Q implementation, as did for Prim’s 
algorithm

Q TE-MIN TD-KEY TOTAL

Linear 
Unsorted O(V) O(1) O(V²+E)
Array:
Binary Heap: O(lgV) O(logV) O(VlgV+ElgV) = O(ElgV)
Fibonacci heap: O(lgV)         O(1)             O(VlgV+E)   

(Amortized) (Amortized) (Worst Case) 

Running Time Analysis of 
Dijkstra’s Algorithm
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Q = unsorted-linear array:
Scan the whole array for EXTRACT-MIN
Joint index for DECREASE-KEY

Q = Fibonacci heap: note advantage of amortized 
analysis
Can use amortized Fibonacci heap bounds per 
operation in the analysis as if they were worst-case
bound
Still get (real) worst-case bounds on aggregate 
running time  

Running Time Analysis of 
Dijkstra’s Algorithm
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Bellman-Ford Algorithm for Single 
Source Shortest Paths

• More general than Dijkstra’s algorithm: 
 Allows edge-weights can be negative

• As a by-product, it detects the existence of negative-
weight cycle(s) reachable from s.
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BELMAN-FORD( G, s ) 
INIT( G, s )
for i ←1 to |V|-1 do 

for each edge (u, v) ∈ E do
RELAX( u, v )

for each edge ( u, v ) ∈ E do
if d[v] > d[u]+w(u,v) then  

return FALSE > neg-weight cycle
return TRUE

Bellman-Ford Algorithm for Single 
Source Shortest Paths
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Observe:

• First nested for-loop performs |V|-1 relaxation passes; 
relax every edge at each pass  

• Last for-loop checks the existence of a negative-weight 
cycle reachable from s

Bellman-Ford Algorithm for Single 
Source Shortest Paths
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• Running time = O(V E)
Constants are good; it’s simple, short code(very 
practical)

• Example: Run algorithm on a sample graph with 
no negative weight cycles.

Bellman-Ford Algorithm for Single 
Source Shortest Paths
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• Converges in just 2 relaxation passes

• Values you get on each pass & how early converges 
depend on edge process order

• d value of a vertex may be updated more than once in a 
pass 

Bellman-Ford Algorithm for Single 
Source Shortest Paths
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Bellman-Ford Correctness
Lemma: Assuming no negative-weight cycles reachable from
s, d[v] = δ(s, v) holds upon termination for all vertices v reachable
from s.

Proof:

Consider a SP p, where  p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

Assume k ≤ |V| – 1, otherwise p has a cycle.

Claim: d[vi] = δ(s, vi) holds after the ith pass over edges.
Proof follows by induction on i.

By Lemma 3(b), once d[vi] = δ(s, vi) holds, it continues to hold.



Correctness
Claim: Algorithm returns the correct value.
(Part of Theorem 24.4.  Other parts of the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v):
d[v] = δ(s, v)                  , if v is reachable;

d[v] = δ(s, v) = ∞ otherwise.
≤ δ(s, u) + w(u, v)
= d[u] + w(u, v)

So, algorithm returns true.



Case 2
Case 2: There exists a reachable negative-weight cycle
c = ‹v0, v1, …, vk›, where v0 = vk.

We have Σi = 1, …, k w(vi-1, vi)  <  0.                                                 (*)

Suppose algorithm returns true.  Then, d[vi] ≤ d[vi-1] + w(vi-1, vi) for
i = 1, …, k.  (because Relax didn’t change any d[vi] ). Thus,

Σi = 1, …, k d[vi]  ≤ Σi = 1, …, k d[vi-1]  + Σi = 1, …, k w(vi-1, vi) 

But, Σi = 1, …, k d[vi]  =  Σi = 1, …, k d[vi-1].

Can show no d[vi] is infinite.  Hence, 0  ≤ Σi = 1, …, k w(vi-1, vi).

Contradicts (*).   Thus, algorithm returns false.
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