
CS161:
Design and Analysis of

Algorithms

Lecture 15
Leonidas Guibas

1

Outline

Last lecture: Minimum spanning tree
algorithms

Today: Single source shortest path
algorithms

shortest path properties; edge relaxation
Shorest paths on DAGs
Dijkstra’s algorithm
Bellman-Ford algorithm

Slides modified from
• http://www.cs.bilkent.edu.tr/~atat/502/SingleSourceSP.ppt
• http://www.cs.unc.edu/.../comp122/

2

http://www.cs.bilkent.edu.tr/%7Eatat/502/SingleSourceSP.ppt
http://www.cs.unc.edu/.../comp122/

Minimum Spanning Trees
Spanning Tree

A tree (i.e., connected, acyclic graph) which
contains all the vertices of the graph

Minimum Spanning Tree
Spanning tree with the minimum sum of
weights

Spanning forest
If a graph is not connected, then there is a
spanning tree for each connected component of
the graph

a

b c d

e

g g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

3

Greedy MST Algorithms

Greedy algorithms
iteratively make “myopic” decisions – aimed
at locally optimal choice
but somehow everything works out to yield
the global optimum at the end

While growing a partial MST, an edge not
currently in the tree is safe, if it can be
added while still being part of some MST

4

Generic MST algorithm
1. A ← ∅

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A ∪ {(u, v)}

5. return A

Key: how do we find safe edges?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

5

Prim’s Algorithm
The edges in set A always form a single tree

Start from an arbitrary “root”: VA = {a}

At each step:
Find a light edge crossing (VA, V - VA)

Add this edge to A

Repeat until the tree spans all vertices
a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Greedy approach
6

We add
edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Kruskal’s Algorithm
Start with each vertex being its
own component
Repeatedly merge two
components into one by
choosing the light edge that
connects them
Which components to consider
at each iteration?

Scan the set of edges in
monotonically increasing order by
weight (guarantees lightness)

7

Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many
“clouds” at once, but is more “parallel”.

Each iteration of the while-loop halves the number of connected
compontents in T.

The running time of all three algorithms is basically O(E log V).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than V|-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T

8

Introduction: Shortest Paths

Generalization of simple BFS to handle weighted
graphs
Direct Graph G = (V, E), edge weight function
w : E → R
In simple BFS, we have w(e)=1 for all e ϵ E

Weight of path p = v1 → v2 → … → vk is
1

1
1

() (,)
k

i i
i

w p w v v
−

+
=

=∑

9

5 2 7 –1 –2

Shortest Path
Shortest Path = Path of minimum weight

between two vertices u and v

δ(u,v)=

Distance from u to v = length of shortest
path from u to v

min{w(p) : u v}; if there is a path from u to v,

∞ otherwise.

p

10

Shortest-Path Variants

Shortest-Path problems

Single-source shortest-paths problem: Find the shortest path
from s to each vertex v. (e.g. BFS)

Single-destination shortest-paths problem: Find a shortest path
to a given destination vertex t from each vertex v.

Single-pair shortest-path problem: Find a shortest path from u
to v for given vertices u and v.

All-pairs shortest-paths problem: Find a shortest path from u to
v for every pair of vertices u and v.

11

Optimal Substructure Property

Theorem: Subpaths of shortest paths are also shortest
paths

Let P1k = <v1, ... ,vk > be a shortest path from v1 to vk

Let Pij = <vi, ... ,vj > be subpath of P1k from vi to vj

for any 1 ≤ i ≤ j ≤k
Then Pij is itself a shortest path from vi to vj

12

v2
v3 v4 v5 v6 v7v1v0

Proof: By cut and paste

If some subpath were not a shortest path
We could substitute a shorter subpath in the original
path to create a shorter total path
Hence, the original path would not be shortest path

v2
v3 v4 v5 v6 v7

Optimal Substructure Property

v1v0

13

Definition:
δ(u,v) = weight of a shortest path(s) from u to v

Not always well defined:
negative-weight cycle in graph: Some shortest paths
may not be defined
argument:can always get a shorter path by going
around the negative cycle again

s v

cycle
< 0

Negative Weight Cycles

14

Negative-Weight Edges

No problem, as long as no negative-weight cycles are
reachable from the source
Otherwise, we can just keep going around it, and get
w(s, v) = −∞ for all v on the cycle.

15

Triangle Inequality

Lemma 1: for a given vertex s V and for every edge (u,v)
ϵ E,
δ(s,v) ≤ δ(s,u) + w(u,v)

Proof: shortest path s v is not longer than any other path.
in particular the path that takes the shortest path s u
and then takes edge (u,v)

s

u v

16

Edge Relaxation

Maintain d[v] for each v V
d[v] is called a shortest-path weight estimate
and is an upper bound on δ(s,v)

INIT(G, s)
for each v ∈ V do

d[v] ← ∞
π[v] ← NIL

d[s] ← 0

17

as before, predecessor on
shortest path from s to v

Edge Relaxation
RELAX(u, v)

if d[v] > d[u]+w(u,v) then
d[v] ← d[u]+w(u,v)
π[v] ← u

5
u v

vu

2

2

9

5 7

Relax(u,v)

5
u v

vu

2

2

6

5 6

18

Properties of Relaxation

Shortest path algorithms work by relaxing edges. They
differ in

 how many times they relax each edge, and
 the order in which they relax edges

Question: How many times each edge is relaxed in BFS?
Answer: Only once!

19

Properties of Relaxation

Given:
An edge weighted directed graph G = (V, E) with
edge weight function (w:E → R) and a source vertex s
ϵ V
G is initialized by INIT(G , s)

Lemma 2: Immediately after relaxing edge (u,v),
d[v] ≤ d[u] +w(u,v)

Lemma 3: For any sequence of relaxation steps over E,
(a) the invariant d[v] ≥ δ(s,v) is maintained
(b) once d[v] achieves its lower bound, it never
changes.

20

Properties of Relaxation

Proof of (a): certainly true after
INIT(G,s) : d[s] = 0 = δ(s,s):d[v] = ∞ ≥ δ(s,v) ∀ v∈ V-{s}

Proof by contradiction:Let v be the first vertex for
which
RELAX(u, v) causes d[v] < δ(s, v)
After RELAX(u , v) we have

• d[u] + w(u,v) = d[v] < δ(s, v)
≤ δ(s, u) + w(u,v) by L2

• d[u]+w(u,v) < δ(s, u) + w(u, v) => d[u] < δ(s, u)
contradicting the assumption

21

Properties of Relaxation

Proof of (b):

d[v] cannot decrease after achieving its lower bound;
because d[v] ≥ δ(s,v)

d[v] cannot increase since relaxations don’t increase
d values.

22

Properties of Relaxation

C1 : For any vertex v which is not reachable from s, we
have the invariant d[v] = δ(s,v) that is maintained
over any sequence of relaxations

Proof: By L3(b), we always have ∞ = δ(s,v) ≤ d[v]
=> d[v] = ∞ = δ(s,v)

23

Properties of Relaxation

Lemma 4: Let s u →v be a shortest path from s to v
for some u,v V

• Suppose that a sequence of relaxations including
RELAX(u,v) were performed on E

• If d[u] = δ(s, u) at any time prior to RELAX(u, v)
• then d[v] = δ(s, v) at all times after RELAX(u, v)

24

Properties of Relaxation

Proof: If d[u] = δ(s, v) prior to RELAX(u, v)
d[u] = δ(s, v) hold thereafter by L3(b)

After RELAX(u,v), we have d[v] ≤ d[u] + w(u, v) by
L2

= δ(s, u) + w(u, v) hypothesis
= δ(s, v) by optimal subst.property

Thus d[v] ≤ δ(s, v)
But d[v] ≥ δ(s, v) by L3(a) => d[v] = δ(s, v)

Q.E.D.
25

Single-Source Shortest Paths in
DAGs

Shortest paths are always well-defined in dags
 no cycles => no negative-weight cycles even if

there are negative-weight edges

Idea: If we were lucky
 To process vertices on each shortest path from

left to right, we would be done in 1 pass due
to L4

26

Single-Source Shortest Paths in
DAGs

In a DAG:
Every path is a subsequence of the topologically
sorted vertex order
If we do topological sort and process edges in the
order of their origins
We will process each path in forward order
 Never relax edges out of a vertex until have

processed all edges into the vertex
Thus, just one pass is sufficient

27

Single-Source Shortest Paths in
DAGs

DAG-SHORTEST PATHS(G, s)
TOPOLOGICALLY-SORT the vertices of G
INIT(G, s)
for each vertex u taken in topologically sorted
order do

for each v Adj[u] do
RELAX(u, v)

28

Example

∞ 0 ∞ ∞ ∞ ∞
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Example

∞ 0 ∞ ∞ ∞ ∞
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Example

∞ 0 2 6 ∞ ∞
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Example

∞ 0 2 6 6 4
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Example

∞ 0 2 6 5 4
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Example

∞ 0 2 6 5 3
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Example

∞ 0 2 6 5 3
r s t u v w

5 2 7 –1 –2

6 1

3
2

4

Single-Source Shortest Paths in
DAGs

Runs in linear time: Θ(V+E)

 topological sort: Θ(V+E)

 initialization: Θ(V+E)

 for-loop: Θ(V+E)
each vertex processed exactly once

=> each edge processed exactly once: Θ(V+E)

36

Single-Source Shortest Paths in
DAGs

Thm: (Correctness of DAG-SHORTEST-PATHS):

At termination of DAG-SHORTEST-PATHS
procedure
d[v] = δ(s, v) for all v V

37

Single-Source Shortest Paths in
DAGs

Proof: If v ϵ Rs , then d[v] = δ(s, v)

If v ϵ Rs , so a shortest path
p = <v0=s, v1, v2, …,vk=v>
Because we process vertices in topologically sorted
order
 Edges on p are relaxed in the order

(u0, u1),(u1, u2),...,(uk-1, uk)
A simple induction on k using L4 shows that
 d[vi] = δ(s, v) at termination for i = 0,1,2,...,k

v V

38

Non-negative edge weights

Like BFS: If all edge weights are equal, then use
BFS, otherwise use this algorithm

Use Q = priority queue keyed on d[v] values
(note: BFS uses FIFO)

Dijkstra’s Algorithm For Shortest
Paths

39

DIJKSTRA(G, s)
INIT(G, s)

S←Ø > set of discovered nodes
Q←V[G]
while Q ≠Ø do

u←EXTRACT-MIN(Q)
S←S U {u}
for each v Adj[u] do

RELAX(u, v) > may cause
> DECREASE-KEY(Q, v, d[v])

Dijkstra’s Algorithm For Shortest
Paths

40

Example

0

∞∞

∞∞

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

∞5

∞10

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

148

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

138

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Observe :

Each vertex is extracted from Q and inserted into S
exactly once
Each edge is relaxed exactly once
S = set of vertices whose final shortest paths have
already been determined
 i.e. , S = {v V: d[v] = δ(s, v) ≠ ∞ }

Dijkstra’s Algorithm For Shortest
Paths

47

Similar to BFS algorithm: S corresponds to the set of
black vertices in BFS which have their correct
breadth-first distances already computed

Greedy strategy: Always chooses the closest
(lightest) vertex in Q = V-S to insert into S

Relaxation may reset d[v] values thus updating
Q = DECREASE-KEY operation.

Dijkstra’s Algorithm For Shortest
Paths

48

Similar to Prim’s MST algorithm: Both algorithms
use a priority queue to find the lightest vertex
outside a given set S

Insert this vertex into the set

Adjust weights of remaining adjacent vertices
outside the set accordingly

Dijkstra’s Algorithm For Shortest
Paths

49

Correctness
Theorem : Upon termination, d[u] = δ(s, u) for all u in V
(assuming non-negative weights).

Proof:

By Lemma 3(b), once d[u] = δ(s, u) holds, it continues to hold.

We prove: For each u in V, d[u] = δ(s, u) when u is inserted in S.

Suppose not. Let u be the first vertex such that d[u] ≠ δ(s, u) when
inserted in S.

Note that d[s] = δ(s, s) = 0 when s is inserted, so u ≠ s.

⇒ S ≠ ∅ just before u is inserted (in fact, s ∈ S).

Proof (Continued)
Note that there exists a path from s to u, for otherwise
d[u] = δ(s, u) = ∞ by Corollary 24.12.

⇒ there exists a SP from s to u. Say SP looks like this:

x

s

y

u

S

p1

p2

Proof (Continued)
Claim: d[y] = δ(s, y) when u is inserted into S.

We had d[x] = δ(s, x) when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 3(b), this implies the claim.

Now, we have: d[y] = δ(s, y) , by Claim.
≤ δ(s, u) , nonnegative edge weights.
≤ d[u] , by Lemma 3(a).

Because u was added to S before y, d[u] ≤ d[y].

Thus, d[y] = δ(s, y) = δ(s, u) = d[u].

Contradiction.

Computing Paths (not just
Distances)

Maintain for each node v a predecessor
node π(v)
π(v) is initialized to be null
Whenever an edge (u,v) is relaxed such
that d(v) improves, then π(v) can be set
to be u
Paths can be generated from this data
structure

Look at different Q implementation, as we did for
Prim’s algorithm
Initialization (INIT) : Θ(V) time
While-loop:

• EXTRACT-MIN executed |V| times
• DECREASE-KEY executed |E| times

Time T = |V| x TE-MIN +|E| x TD-KEY

Running Time Analysis of
Dijkstra’s Algorithm

54

Look at different Q implementation, as did for Prim’s
algorithm

Q TE-MIN TD-KEY TOTAL

Linear
Unsorted O(V) O(1) O(V²+E)
Array:
Binary Heap: O(lgV) O(logV) O(VlgV+ElgV) = O(ElgV)
Fibonacci heap: O(lgV) O(1) O(VlgV+E)

(Amortized) (Amortized) (Worst Case)

Running Time Analysis of
Dijkstra’s Algorithm

55

Q = unsorted-linear array:
Scan the whole array for EXTRACT-MIN
Joint index for DECREASE-KEY

Q = Fibonacci heap: note advantage of amortized
analysis
Can use amortized Fibonacci heap bounds per
operation in the analysis as if they were worst-case
bound
Still get (real) worst-case bounds on aggregate
running time

Running Time Analysis of
Dijkstra’s Algorithm

56

Bellman-Ford Algorithm for Single
Source Shortest Paths

• More general than Dijkstra’s algorithm:
 Allows edge-weights can be negative

• As a by-product, it detects the existence of negative-
weight cycle(s) reachable from s.

57

BELMAN-FORD(G, s)
INIT(G, s)
for i ←1 to |V|-1 do

for each edge (u, v) ∈ E do
RELAX(u, v)

for each edge (u, v) ∈ E do
if d[v] > d[u]+w(u,v) then

return FALSE > neg-weight cycle
return TRUE

Bellman-Ford Algorithm for Single
Source Shortest Paths

58

Observe:

• First nested for-loop performs |V|-1 relaxation passes;
relax every edge at each pass

• Last for-loop checks the existence of a negative-weight
cycle reachable from s

Bellman-Ford Algorithm for Single
Source Shortest Paths

59

• Running time = O(V E)
Constants are good; it’s simple, short code(very
practical)

• Example: Run algorithm on a sample graph with
no negative weight cycles.

Bellman-Ford Algorithm for Single
Source Shortest Paths

60

Example

0

∞∞

∞∞

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

Example

0

∞7

∞6

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

Example

0

27

46

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

Example

0

27

42

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

Example

0

-27

42

z

u v

x y

6

5

–3

9

7

7

8

–2

–4
2

• Converges in just 2 relaxation passes

• Values you get on each pass & how early converges
depend on edge process order

• d value of a vertex may be updated more than once in a
pass

Bellman-Ford Algorithm for Single
Source Shortest Paths

66

Bellman-Ford Correctness
Lemma: Assuming no negative-weight cycles reachable from
s, d[v] = δ(s, v) holds upon termination for all vertices v reachable
from s.

Proof:

Consider a SP p, where p = ‹v0, v1, …, vk›, where v0 = s and vk = v.

Assume k ≤ |V| – 1, otherwise p has a cycle.

Claim: d[vi] = δ(s, vi) holds after the ith pass over edges.
Proof follows by induction on i.

By Lemma 3(b), once d[vi] = δ(s, vi) holds, it continues to hold.

Correctness
Claim: Algorithm returns the correct value.
(Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.)

Case 1: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v):
d[v] = δ(s, v) , if v is reachable;

d[v] = δ(s, v) = ∞ otherwise.
≤ δ(s, u) + w(u, v)
= d[u] + w(u, v)

So, algorithm returns true.

Case 2
Case 2: There exists a reachable negative-weight cycle
c = ‹v0, v1, …, vk›, where v0 = vk.

We have Σi = 1, …, k w(vi-1, vi) < 0. (*)

Suppose algorithm returns true. Then, d[vi] ≤ d[vi-1] + w(vi-1, vi) for
i = 1, …, k. (because Relax didn’t change any d[vi]). Thus,

Σi = 1, …, k d[vi] ≤ Σi = 1, …, k d[vi-1] + Σi = 1, …, k w(vi-1, vi)

But, Σi = 1, …, k d[vi] = Σi = 1, …, k d[vi-1].

Can show no d[vi] is infinite. Hence, 0 ≤ Σi = 1, …, k w(vi-1, vi).

Contradicts (*). Thus, algorithm returns false.

	CS161:�Design and Analysis of Algorithms�����Lecture 15�Leonidas Guibas
	Outline
	Minimum Spanning Trees
	Greedy MST Algorithms
	Generic MST algorithm
	Prim’s Algorithm
	Kruskal’s Algorithm
	Baruvka’s Algorithm
	Introduction: Shortest Paths
	Shortest Path
	Shortest-Path Variants
	Optimal Substructure Property
	Optimal Substructure Property
	Negative Weight Cycles
	Negative-Weight Edges
	Triangle Inequality
	Edge Relaxation
	Edge Relaxation
	Properties of Relaxation
	Properties of Relaxation�
	Properties of Relaxation�
	Properties of Relaxation�
	Properties of Relaxation�
	Properties of Relaxation�
	Properties of Relaxation�
	Single-Source Shortest Paths in DAGs
	Single-Source Shortest Paths in DAGs
	Single-Source Shortest Paths in DAGs
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Single-Source Shortest Paths in DAGs
	Single-Source Shortest Paths in DAGs
	Single-Source Shortest Paths in DAGs
	Dijkstra’s Algorithm For Shortest Paths
	Dijkstra’s Algorithm For Shortest Paths
	Example
	Example
	Example
	Example
	Example
	Example
	Dijkstra’s Algorithm For Shortest Paths
	Dijkstra’s Algorithm For Shortest Paths
	Dijkstra’s Algorithm For Shortest Paths
	Correctness
	Proof (Continued)
	Proof (Continued)
	Computing Paths (not just Distances)
	Running Time Analysis of �Dijkstra’s Algorithm
	Running Time Analysis of �Dijkstra’s Algorithm
	Running Time Analysis of �Dijkstra’s Algorithm
	Bellman-Ford Algorithm for Single Source Shortest Paths
	Bellman-Ford Algorithm for Single Source Shortest Paths
	Bellman-Ford Algorithm for Single Source Shortest Paths
	Bellman-Ford Algorithm for Single Source Shortest Paths
	Example
	Example
	Example
	Example
	Example
	Bellman-Ford Algorithm for Single Source Shortest Paths
	Bellman-Ford Correctness
	Correctness
	Case 2

