CS161: Design and Analysis of Algorithms

Lecture 15 Leonidas Guibas

Outline

Last lecture: Minimum spanning tree algorithms

 Today: Single source shortest path algorithms

- shortest path properties; edge relaxation
- Shorest paths on DAGs
- Dijkstra's algorithm

Bellman-Ford algorithm

Slides modified from

- <u>http://www.cs.bilkent.edu.tr/~atat/502/SingleSourceSP.ppt</u>
- http://www.cs.unc.edu/.../comp122/

Minimum Spanning Trees

Spanning Tree

 A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph

Minimum Spanning Tree

Spanning tree with the minimum sum of weights

- Spanning forest
 - If a graph is not connected, then there is a spanning tree for each connected component of the graph

Greedy MST Algorithms

Greedy algorithms

- iteratively make "myopic" decisions aimed at locally optimal choice
- but somehow everything works out to yield the global optimum at the end

 While growing a partial MST, an edge not currently in the tree is safe, if it can be added while still being part of some MST

Generic MST algorithm

- **1.** A ← ∅
- 2. while A is not a spanning tree
- 3. do find an edge (u, v) that is safe for A
- 4. $A \leftarrow A \cup \{(u, v)\}$
- 5. return A

Key: how do we find safe edges?

Prim's Algorithm

- The edges in set A always form a single tree
- Start from an arbitrary "root": V_A = {a}
- At each step:
 - Find a light edge crossing $(V_A, V V_A)$
 - Add this edge to A
 - Repeat until the tree spans all vertices

Greedy approach

Kruskal's Algorithm

- Start with each vertex being its own component
- Repeatedly merge two components into one by choosing the light edge that connects them
- Which components to consider at each iteration?
 - Scan the set of edges in monotonically increasing order by weight (guarantees lightness)

Baruvka's Algorithm

 Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once, but is more "parallel".

Algorithm BaruvkaMST(G) $T \leftarrow V$ {just the vertices of G}while T has fewer than V|-1 edges dofor each connected component C in T doLet edge e be the smallest-weight edge from C to another component in T.if e is not already in T thenAdd edge e to Treturn T

- Each iteration of the while-loop halves the number of connected compontents in T.
- The running time of all three algorithms is basically O(E log V).

Introduction: Shortest Paths

- Generalization of simple BFS to handle weighted graphs
- Direct Graph G = (V, E), edge weight function
 w : E → R
- In simple BFS, we have w(e)=1 for all $e \in E$

Weight of path
$$p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$$
 is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Shortest Path

Shortest Path = Path of minimum weight between two vertices u and v

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\}; \text{ if there is a path from u to } v, \\ \infty & \text{otherwise.} \end{cases}$$

Distance from u to v =length of shortest path from u to v

Shortest-Path Variants

Shortest-Path problems

- Single-source shortest-paths problem: Find the shortest path from s to each vertex v. (e.g. BFS)
- Single-destination shortest-paths problem: Find a shortest path to a given *destination* vertex *t* from each vertex *v*.
- Single-pair shortest-path problem: Find a shortest path from u to v for given vertices u and v.
- All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v.

Optimal Substructure Property

Theorem: Subpaths of shortest paths are also shortest paths

- Let $P_{1k} = \langle V_1, \dots, V_k \rangle$ be a shortest path from V_1 to V_k
- Let $P_{ij} = \langle v_i, \dots, v_j \rangle$ be subpath of P_{1k} from v_i to v_j for any $1 \le i \le j \le k$
- Then P_{ii} is itself a shortest path from v_i to v_i

Optimal Substructure Property

Proof: By cut and paste

- If some subpath *were not* a shortest path
- We could substitute a shorter subpath in the original path to create a shorter total path
- Hence, the original path would not be shortest path

Negative Weight Cycles

Definition:

• $\delta(u, v)$ = weight of a shortest path(s) from *u* to *v*

Not always well defined:

- negative-weight cycle in graph: Some shortest paths may not be defined
- argument:can always get a shorter path by going around the negative cycle again

Negative-Weight Edges

- No problem, as long as no negative-weight cycles are reachable from the source
- Otherwise, we can just keep going around it, and get w(s, v) = -∞ for all v on the cycle.

Triangle Inequality

Lemma 1: for a given vertex $s \rightsquigarrow V$ and for every edge $(u,v) \in E$,

• $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Proof: shortest path s ~ v is not longer than any other path.

 in particular the path that takes the shortest path s ~ u and then takes edge (u,v)

Edge Relaxation

- Maintain d[v] for each $v \rightsquigarrow V$
- d[v] is called a shortest-path weight estimate and is an upper bound on δ(s,v)

$$INIT(G, s)$$

for each $v \in V$ do
 $d[v] \leftarrow \infty$
 $\pi[v] \leftarrow NIL \leftarrow$
 $d[s] \leftarrow 0$

as before, predecessor on shortest path from *s* to *v*

Edge Relaxation

Shortest path algorithms work by relaxing edges. They differ in

- how many times they relax each edge, and
- > *the order* in which they relax edges

Question: How many times each edge is relaxed in BFS? *Answer:* Only once!

Given:

- An edge weighted directed graph G = (V, E) with edge weight function (w: $E \rightarrow R$) and a source vertex s $\in V$
- G is initialized by INIT(G,s)

Lemma 2: Immediately after relaxing edge (u,v), $d[v] \le d[u] + w(u,v)$

Lemma 3: For any sequence of relaxation steps over E, (a) the invariant $d[v] \ge \delta(s, v)$ is maintained (b) once d[v] achieves its lower bound, it never changes.

Proof of (a): certainly true after

 $INIT(G,s): d[s] = 0 = \delta(s,s):d[v] = \infty \ge \delta(s,v) \forall v \in V - \{s\}$

Proof by contradiction:Let v be the first vertex for which

RELAX(u, v) causes $d[v] < \delta(s, v)$

- After **RELAX(u**, v) we have
 - $d[u] + w(u,v) = d[v] < \delta(s, v)$ $\leq \delta(s, u) + w(u,v)$ by L2
 - $d[u]+w(u,v) < \delta(s, u) + w(u, v) => d[u] < \delta(s, u)$ contradicting the assumption

Proof of (b):

- d[v] cannot decrease after achieving its lower bound; because $d[v] \ge \delta(s, v)$
- d[v] cannot increase since relaxations don't increase d values.

C1 : For any vertex v which is not reachable from s, we have the invariant $d[v] = \delta(s, v)$ that is maintained over any sequence of relaxations

Proof: By L3(b), we always have $\infty = \delta(s, v) \le d[v]$ => d[v] = $\infty = \delta(s, v)$

Lemma 4: Let $s \sim u \rightarrow v$ be a shortest path from s to v for some $u, v \rightsquigarrow V$

- Suppose that a sequence of relaxations including *RELAX(u,v)* were performed on E
- If $d[u] = \delta(s, u)$ at any time prior to **RELAX(u, v)**
- then $d[v] = \delta(s, v)$ at all times after **RELAX(u, v)**

Proof: If $d[u] = \delta(s, v)$ prior to **RELAX(u, v)** $d[u] = \delta(s, v)$ hold thereafter by L3(b)

• After RELAX(u,v), we have $d[v] \le d[u] + w(u, v)$ by L2

> = $\delta(s, u)$ + w(u, v) hypothesis = $\delta(s, v)$ by optimal subst.property

• Thus $d[v] \leq \delta(s, v)$

• But $d[v] \ge \delta(s, v)$ by $L3(a) => d[v] = \delta(s, v)$

Q.E.D.

- Shortest paths are always well-defined in dags
 - no cycles => no negative-weight cycles even if there are negative-weight edges
- Idea: If we were lucky
 - To process vertices on each shortest path from left to right, we would be done in 1 pass due to L4

In a DAG:

- Every path is a subsequence of the topologically sorted vertex order
- If we do topological sort and process edges in the order of their origins
- We will process each path in forward order
 - Never relax edges out of a vertex until have processed all edges into the vertex
- Thus, just one pass is sufficient

DAG-SHORTEST PATHS(G, s) TOPOLOGICALLY-SORT the vertices of G **INIT(G, s)** for each vertex u taken in topologically sorted order do for each $v \rightsquigarrow Adj[u]$ do **RELAX(u, v)**

Runs in linear time: Θ(V+E)

- > topological sort: $\Theta(V+E)$
- > initialization: $\Theta(V+E)$
- for-loop: Θ(V+E)

 each vertex processed exactly once
 => each edge processed exactly once: Θ(V+E)

Single-Source Shortest Paths in DAGs

Thm: (Correctness of DAG-SHORTEST-PATHS):

At termination of *DAG-SHORTEST-PATHS* procedure $d[v] = \delta(s, v)$ for all $v \rightsquigarrow V$

Single-Source Shortest Paths in DAGs

Proof: If $v \in \mathbb{R}_s$, then $d[v] = \delta(s, v) \quad \forall v \rightsquigarrow V$

• If $v \in R_s$, so $\exists a \text{ shortest path}$

$$p = \langle v_0 = s, v_1, v_2, ..., v_k = v \rangle$$

- Because we process vertices in topologically sorted order
 - Edges on p are relaxed in the order (*U*₀, *U*₁),(*U*₁, *U*₂),...,(*U*_{k-1}, *U*_k)
- A simple induction on k using *L4* shows that
 - > $d[v_i] = \delta(s, v)$ at termination for i = 0, 1, 2, ..., k

- Non-negative edge weights
- Like BFS: If all edge weights are equal, then use BFS, otherwise use this algorithm
- Use Q = priority queue keyed on d[v] values (note: BFS uses FIFO)

```
DIJKSTRA(G, s)
       INIT(G, s)
      S←Ø
                  > set of discovered nodes
      Q←V[G]
       while Q \neq \emptyset do
          u←EXTRACT-MIN(Q)
          S←S U {u}
         for each v ~> Adj[u] do
            RELAX(u, v) > may cause
                         > DECREASE-KEY(Q, v, d[v])
```


Observe :

- Each vertex is extracted from Q and inserted into S exactly once
- Each edge is relaxed exactly once
- S = set of vertices whose final shortest paths have already been determined
 - i.e., S = {v → V: d[v] = δ(s, v) ≠ ∞ }

- Similar to BFS algorithm: S corresponds to the set of black vertices in BFS which have their correct breadth-first distances already computed
- Greedy strategy: Always chooses the closest (lightest) vertex in Q = V-S to insert into S
- Relaxation may reset d[v] values thus updating
 Q = DECREASE-KEY operation.

- Similar to Prim's MST algorithm: Both algorithms use a priority queue to find the lightest vertex outside a given set S
- Insert this vertex into the set
- Adjust weights of remaining adjacent vertices outside the set accordingly

<u>Theorem</u>: Upon termination, $d[u] = \delta(s, u)$ for all u in V (assuming non-negative weights).

Proof:

By Lemma 3(b), once $d[u] = \delta(s, u)$ holds, it continues to hold.

<u>We prove</u>: For each u in V, $d[u] = \delta(s, u)$ when u is inserted in S.

Suppose not. Let u be the first vertex such that $d[u] \neq \delta(s, u)$ when inserted in S.

Note that $d[s] = \delta(s, s) = 0$ when s is inserted, so $u \neq s$.

 \Rightarrow S $\neq \emptyset$ just before u is inserted (in fact, s \in S).

Proof (Continued)

Note that there exists a path from s to u, for otherwise $d[u] = \delta(s, u) = \infty$ by Corollary 24.12.

 \Rightarrow there exists a SP from s to u. Say SP looks like this:

Proof (Continued)

<u>Claim</u>: $d[y] = \delta(s, y)$ when u is inserted into S.

We had $d[x] = \delta(s, x)$ when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma 3(b), this implies the claim.

Now, we have:
$$d[y] = \delta(s, y)$$
, by Claim.
 $\leq \delta(s, u)$, nonnegative edge weights.
 $\leq d[u]$, by Lemma 3(a).

Because u was added to S before y, $d[u] \le d[y]$.

Thus, $d[y] = \delta(s, y) = \delta(s, u) = d[u]$.

Contradiction.

Computing Paths (not just Distances)

- Maintain for each node v a predecessor node π(v)
- $\pi(v)$ is initialized to be null
- Whenever an edge (u,v) is relaxed such that d(v) improves, then π(v) can be set to be u
- Paths can be generated from this data structure

Running Time Analysis of Dijkstra's Algorithm

- Look at different Q implementation, as we did for Prim's algorithm
- Initialization (INIT) : Θ(V) time
- While-loop:
 - **EXTRACT-MIN** executed |V| times
 - **DECREASE-KEY** executed |E| times
- Time $T = |V| \times T_{E-MIN} + |E| \times T_{D-KEY}$

Running Time Analysis of Dijkstra's Algorithm

Look at different Q implementation, as did for Prim's algorithm

	Q		То-кеу	TOTAL
٠	Linear Unsorted Array:	O(V)	O(1)	O(V²+E)
•	Binary Heap: Fibonacci heap:	O(lgV) O(lgV) (Amortized)	O(logV) O(1) (Amortiz	O(VIgV+EIgV) = O(EIgV) O(VIgV+E) ed) (Worst Case)

Running Time Analysis of Dijkstra's Algorithm

- Q = unsorted-linear array:
- Scan the whole array for EXTRACT-MIN
- Joint index for DECREASE-KEY
- Q = Fibonacci heap: note advantage of amortized analysis
- Can use amortized Fibonacci heap bounds per operation in the analysis as if they were worst-case bound
- Still get (real) worst-case bounds on aggregate running time

- More general than Dijkstra's algorithm:
 Allows edge-weights can be negative
- As a by-product, it detects the existence of negativeweight cycle(s) reachable from s.

```
\begin{array}{l} \textbf{BELMAN-FORD}(G,s) \\ \textbf{INIT}(G,s) \\ \text{for i} \leftarrow 1 \text{ to } |V|-1 \text{ do} \\ \text{for each edge } (u, v) \in E \text{ do} \\ \textbf{RELAX}(u,v) \end{array}
```

for each edge $(u, v) \in E$ do if d[v] > d[u]+w(u,v) then return FALSE > neg-weight cycle return TRUE

Observe:

- First nested for-loop performs |V|-1 relaxation passes; relax every edge at each pass
- Last for-loop checks the existence of a negative-weight cycle reachable from s

- *Running time* = O(V E) Constants are good; it's simple, short code(very practical)
- *Example*: Run algorithm on a sample graph with no negative weight cycles.

- Converges in just 2 relaxation passes
- Values you get on each pass & how early converges depend on edge process order
- d value of a vertex may be updated more than once in a pass

Bellman-Ford Correctness

Lemma: Assuming no negative-weight cycles reachable from s, $d[v] = \delta(s, v)$ holds upon termination for all vertices v reachable from s.

Proof:

Consider a SP p, where $p = \langle v_0, v_1, \dots, v_k \rangle$, where $v_0 = s$ and $v_k = v$.

Assume $k \leq |V| - 1$, otherwise p has a cycle.

<u>Claim</u>: $d[v_i] = \delta(s, v_i)$ holds after the ith pass over edges. Proof follows by induction on i.

By Lemma 3(b), once $d[v_i] = \delta(s, v_i)$ holds, it continues to hold.

Correctness

<u>Claim</u>: Algorithm returns the correct value.

(Part of Theorem 24.4. Other parts of the theorem follow easily from earlier results.)

<u>Case 1</u>: There is no reachable negative-weight cycle.

Upon termination, we have for all (u, v): $d[v] = \delta(s, v) , \text{ if } v \text{ is reachable;}$ $d[v] = \delta(s, v) = \infty \text{ otherwise.}$ $\leq \delta(s, u) + w(u, v)$ = d[u] + w(u, v)

So, algorithm returns true.

Case 2

<u>Case 2</u>: There exists a reachable negative-weight cycle $c = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$.

We have
$$\sum_{i=1,...,k} w(v_{i-1}, v_i) < 0.$$
 (*)

Suppose algorithm returns true. Then, $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$ for i = 1, ..., k. (because Relax didn't change any $d[v_i]$). Thus,

$$\sum_{i=1,...,k} d[v_i] \leq \sum_{i=1,...,k} d[v_{i-1}] + \sum_{i=1,...,k} w(v_{i-1}, v_i)$$

But, $\sum_{i=1,...,k} d[v_i] = \sum_{i=1,...,k} d[v_{i-1}].$

Can show no d[v_i] is infinite. Hence, $0 \le \sum_{i=1,...,k} w(v_{i-1}, v_i)$. Contradicts (*). Thus, algorithm returns **false**.