CS161.
Design and Analysis of
Algorithms

=4 .
v, W 4
J
L ecture 16

Leonidas Guibas

Qutline

¢ Last lecture: Single source shortest path
algorithms

¢ Today: All pairs shortest path algorithms
+shortest paths and matrix multiplication
+Floyd-Warshall algorithm
stransitive closure of a DAG
+Johnson’s algorithm for sparse graphs

Slides modified from
o http://lwww.cs.bilkent.edu.tr/~atat/502/AllPairsSP.ppt

http://www.cs.bilkent.edu.tr/%7Eatat/502/AllPairsSP.ppt

Shortest Path

Shortest Path = Path of minimum weight
between two vertices u and v

5(u,v):{min{w(p) U v}, if there is a path from u to v,

o0 otherwise.

Distance from u to v = length of shortest
path fromutov

Shortest-Path Variants

¢+ Shortest-Path problems

+ Single-source shortest-paths problem (SSSP): Find the
shortest path from s to each vertex v. (e.g. BFS)

¢ Single-destination shortest-paths problem (SDSP): Find a
shortest path to a given destination vertex t from each vertex v.

¢ Single-pair shortest-path problem (SPSP): Find a shortest path
from u to v for given vertices u and v.

+ All-pairs shortest-paths problem (APSP): Find a shortest
path from u to v for every pair of vertices u and v.

Edge Relaxation

RELAX(u, v)
it d[v] > d[u]*+w(u,v) then
d[v] « d[u]*+w(u,v)
m[v] < u

u \V/ u

Vv
d[u], d[v] denote our current

estimates of their
Relax(u,v) distances from s

@—z’@

u V u

Properties of Relaxation

Given:

+ An edge weighted directed graph G = (V, E) with
edge weight function (w:E — R) and a source vertex s
eV

¢ Gis initialized by INIT(G , s)

Lemma 2: Immediately after relaxing edge (u,v),
d[v] < d[u] +w(u,Vv)

Lemma 3: For any sequence of relaxation steps over E,
(a) the invariant d[v] =2 &(s,v) Is maintained

(b) once d[v] achieves its lower bound, it never
changes.

Single-Source Shortest Paths In
DAGS

DAG-SHORTEST PATHS(G, s)
TOPOLOGICALLY-SORT the vertices of G
INIT(G, s)

for each vertex u taken in topologically sorted
order do

for each v ~~ Adj[u] do
RELAX(u, v)

Dijkstra’s Algorithm For Shortest
Paths

DIJKSTRA(G, s)

INIT(G, S)
S0 > set of discovered nodes
Q—V[G]
while Q #@ do

u—EXTRACT-MIN(Q)

S—S U {u}

for each v ~~ Adj[u] do

RELAX(u, v) > May cause
> DECREASE-KEY(Q, v, d[V])

Bellman-Ford Algorithm for Single
Source Shortest Paths

BELMAN-FORD(G, s)
INIT(G, s)
fori <1 to |V|-1 do
for each edge (u, v) € E do
RELAX(u, v)

foreach edge (u,v) € Edo
If d[v] > d[u]+w(u,v) then
return FALSE > 3 neg-weight cycle
return TRUE

All Pairs Shortest Paths (APSP)

1 2 3 4 5
1101 -3]2 -4
2131041 -1
3| 7141053
412 |-1]-510]-2
5185|1610

Matrix representation of graphs

10

All Pairs Shortest Paths (APSP)

e given : directedgraph G =(V, E),
weight function o : E - R, |[V|=n

* goal :createannxn matrix D = (d;) of shortest path distances
l.e., dij = 0(v, vj)
o trivial APSP solution : run a SSSP algorithm n times, using
each vertex as the source.

11

All Pairs Shortest Paths (APSP)

» all edge weights are nonnegative : use Dijkstra’s algorithm
¢ PQ = binary heap : O (V?lgV + EVIgV) =0 (V3lgV)
for dense graphs
¢ PQ = Fibonacci heap : O (V?lgV + EV) =0 (V?)
for dense graphs
» negative edge weights : use Bellman-Ford algorithm
¢« O (V?E) =0 (V*) ondense graphs

12

Adjacency Matrix Representation of
Weighted Graphs

»n x nmatrix W = (w;;) of edge weights :

Co(v;, V) if(v,v)eE

W = <

o if (vi,v;) € E
»assume w; =0 forall v; € V, because

¢ N0 neg-weight cycle
= shortest path to itself has no edge,

l.e,o(vi,vi)=0

13

Shortest Paths via Dynamic Programming

(1) Characterize the structure of an optimal solution.
(2) Recursively define the value of an optimal solution.

(3) Compute the value of an optimal solution in a
bottom-up manner.

(4) Construct an optimal solution from information
constructed in (3).

14

Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path :
¢ Consider a shortest path p;;" fromv; to v; such that |p;;"| <m
» i.e, path pijm has at most m edges.

+ no negative-weight cycle = all shortest paths are simple
= m isfinte=>m<|V|-1
¢ i=] =>|pil=0 & o(p;)=0

e i#]j = decompose path p;" into p; " & v, — v, , where [p; ™| <m - 1
> pikm'l must be a shortest path from v; to v, by optimal substructure

property.
» Therefore, & (v;,v;) =8 (v Vi) + 0y

15

Shortest Paths and Matrix Multiplication

(2) A Recursive Solution to All Pairs Shortest Paths Problem :

¢ d;" = minimum weight of any path from v; to v; that contains
at most “m” edges.

« m=0: There exist a shortest path from v; to v; with no
edges < i =7.

(0 if i=]

. m — : m-1 : m-1
e m=>1:d;" =min{d;"", min g s Ly + 0 3}
_ : -1
=min 4, {dy\"" + o } forall v, e V,
since w;; =0 forall v,e V.

d;" = minyg, {d;"" + o } forall v, e V 16

Shortest Paths and Matrix Multiplication

+ to consider all possible shortest paths with < m edges from v; to v;
» consider shortest path with <m -1 edges, from v; to v, , where
Ve €R, and (v, ,v;) € E
vy’

@//?

e note:d(v;,v;)=d;" =dy"=d;""...,sincem<n-1=|V]-1

wm

Q
10

* OO0

d;" = minyg, {d;"" + o } forall v, e V

17

Shortest Paths and Matrix Multiplication

(3) Computing the shortest-path weights bottom-up:

e given W = D!, compute a series of matrices D?, D°, ..., D",
where D™ = (d;") form=1,2,.,n-1

» final matrix D" contains actual shortest path weights,
ie,d"™=d(v;.v)

+ SLOW-APSP(W)
D! W
form «— 2 ton-1 do
D™ « EXTEND(D™, W)
return D"

18

Shortest Paths and Matrix Multiplication

EXTEND (D, W)
» D=(dj)Iisannxn matrix
fori«<— [ton do
forj— 1 ton do
dij<—oo
fork<— [ton do
d;; < min{d;
return D

i Qi+ o}

MATRIX-MULT (A,B)
» C =(¢;)Isannxnresult matrix
fori <1 ton do
forj«— 1 ton do
Cj <0
fork<— Iton do
Cjj «— Cij + 8 X by
return C

19

Shortest Paths and Matrix Multiplication

+ relation to matrix multiplication C = Ax B @ ¢;;= X4, Qi X By,
» D" ' A & WoB & D" C
C‘min79 > CC+” & “+77 <> “X,, & 66w77 > 6‘079

+ Thus, we compute the sequence of matrix products

D! =D W = W ; note D° = identity matrix, 0 if i=]
D?=Dix W= W? e, d;’ =
D3:D2XW: W3 oo 1f l?éj

Dn—1= Dn—2 x W = Wn—l

+ running time: O(n*)=0(V*)
» each matrix product : ©(n®)
» number of matrix products : n-1

Cij = 21<ken Qik X Dy

d;" = minyg, {d;"" + o } forall v, e V

20

Shortest Paths and Matrix Multiplication

o Example

21

Shortest Paths and Matrix Multiplication

1 2 3 4 5

1103 |8|xo|-4

3|04 |0 |o0]| o

412 |o|-5|0 |
5lwo|owo|oo| 6|0

D= D°W

22

Shortest Paths and Matrix Multiplication

2 3 4 5
110|138 2

1

-4

-2

6|0

5|0

-1

3l | 4|0]|5 |11

4 | 2

518 || 1

D'W

D*=

23

Shortest Paths and Matrix Multiplication

2 3 4 5

1
11073

-4
-1

-2
0

6

-3 | 2

-4 11

5|0

1

-1

2130

4 | 2

518 |5

D3= D?W

24

Shortest Paths and Matrix Multiplication

2 3 4 5

1

0

0
6

-5
1

3714|053

5|18 |9

D*= D3W

25

SSSP and Matrix-Vector Multiplication

+ relation of APSP to one step of matrix multiplication

Cj

D" C DMl 4 W< B

26

SSSP and Matrix-Vector Multiplication

+dij”'1 at row r; and column ¢; of product matrix
=d(v=s,y;) forj=1,2,3,..,n

«row r; of the product matrix = solution to
single-source shortest path problem for s = v;.

» r. of C = matrix B multiplied by r; of A
= D"=D"tx W

27

SSSP and Matrix-Vector Multiplication

(0 ifi=j
¢ let ;"= d°, where d.” = <

_ oo otherwise
We compute a sequence of n-1 “matrix-vector” products

dl=d’xW
2 - A1
O i3 - di2 XW d;" = ming, {d;"" + o } forall v, e V
d’=d“xW
. Relaxing the edge (k,j)
S = 02 5 T D

28

SSSP and Matrix-Vector Multiplication

+ this sequence of matrix-vector products
» same as Bellman-Ford algorithm.

» vector d™ = d values of Bellman-Ford
algorithm after m-th relaxation pass.

> dim < dim-lx W
= m-th relaxation pass over all edges.

29

SSSP and Matrix-Vector Multiplication

BELLMAN-FORD (G, v;)
» perform RELAX (u, v) for
» everyedge(u,v) eE
forj«— Itondo
fork<— Itondo
RELAX (v, V;)

RELAX (u,Vv)
d,=min {d,, d,+ o}

EXTEND (d;, W)
» d. is an n-vector
forj« 1 tondo
dj «— O
fork< 1 tondo
di <~ min { d;, d, + o }

30

Improving Running Time Through
Repeated Squaring

+ idea: goal is not to compute all D™ matrices
» we are interested only in matrix D"

« recall : no negative-weight cycles = D™ = D" for all m > n-1
+ we can compute D" with onlyr Ig(n—ﬂ matrix products as

D! = w

D? = W2=W x W
D* = W* = W2 x W2
D% = w8 =w* x w?

HTg(n-1)]1 -1

Mg(n-1)] fg(n-1
D2 _W?* _W° xW’

+ This technique is called repeated squaring.

[lg(n-1)]-1

Improving Running Time Through
Repeated Squaring

¢+ FASTER-APSP (W)
D!— W
m<«— 1
while m < n-1 do
D™« EXTEND (D™, D™)
m <«— 2m
return D™

+ final iteration computes D°™ for some n-/ <2m < 2n-2 = D™ =D"!

¢ runningtime : ®(n’lgn) = O(V3lgV)

» each matrix product : @(n®)]
» # of matrix products : Ig(n-1)

» simple code, no complex data structures, small hidden
constants in ®-notation.

32

|dea Behind Repeated Squaring
+ decompose p;“" as p;" & p;", Where

33

A Different Way: the
Floyd-Warshall Algorithm

assumption : negative-weight edges, but no negative-weight cycles

(1) The Structure of a Shortest Path :

Definition : intermediate vertex ofapath P =<v,, Vv,, V5, ..., V>
» any vertex of P other than v, or v, .

pijm : a shortest path from v; to v; with all intermediate vertices
fromV _={v,,v,, ...,V }

relationship between p;™ and p;™*
» depends on whether v, is an intermediate vertex of pijm

- case 1: v, Is not an intermediate vertex of pijm
= all intermediate vertices of pijm arein V4
m — m-1
= Pij = Pjj

34

Floyd-Warshall Algorithm

-case 2. Vv, Isan intermediate vertex of pijm
- decompose path as v; n_» Vi, o~ V,

= P1iVia oV & Poivy a

- by opt. structure property both p; & P, are shortest paths.

- V., Is not an intermediate vertex of P; & P,

=P =P & Pp=Py™

35

Floyd-Warshall Algorithm

(2) A Recursive Solution to APSP Problem :

¢ d;" = o(p;) : weight of a shortest path from v;to v,
with all intermediate vertices from

Vo= {Vy, Vg, ey Vi }
¢ note : d;" =8 (v;,v;)since V, =V

» I.e., all vertices are considered for being
intermediate vertices of p;;".

36

Floyd-Warshall Algorithm

compute d;™ in terms of d;* with smaller k < m

« m=0: V,=empty set
= path from v; to v; with no intermediate vertex.
.e., v; o v; paths with at most one edge

e m>1:d;™ = min{d;™, di,™* + d,, ™" }

37

Floyd-Warshall Algorithm

(3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL(W)
»D° D! ..., D"arenxn matrices
form < /tondo
fori — Itondo
forj«— Itondo
dijm P min {dijm-l’ dimm-l_l_ dmjm-l}
return D"

38

Floyd-Warshall Algorithm

¢ maintaining n D matrices can be avoided by dropping all superscripts.

+ m-th iteration of outermost for-loop
begins with D = D™
ends with D = D™
+ computation of d;" depends on d;,,"* and d ;™"

no problem if d;, & d,; are already updated to d;," & d;"
since di,," = d;,,™* & d,;"=d,;™

¢ running time : ©(n®)=0(V?)
simple code, no complex data structures, small hidden constants

39

Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)
» D isann xn matrix
D—W
form «— Itondo
fori «— /tondo
forj<— Itondo
if d; >d;,, +d,; then
dj — diy +dpyy
return D

40

Transitive Closure of a Directed Graph

e G= (V, E') : transitive closure of G = (V, E), where
> E = {(v, v;): there exists a path from v; tov; in G }

o trivial solution : assign W such that ~ [1if(v;,v,) € E

(Dij:<

L0 otherwise
» run Floyd-Warshall algorithm on W
» d;" <n = there exists a path from v; to v, ,

ie, (vi,vj)eE
» d;" = oo = no path fromv; to v, ,
i.e., (v, J)¢E

» running time : O(n®)=0(V?)

41

Transitive Closure of a Directed Graph

+ Slightly better ®(V*) algorithm : saves time and space.
(1 ifi=jor(v,v)eE

» W =adjacency matrix : ;= <

0 otherwise
» run Floyd-Warshall algorithm by replacing “min” — “V* & “+” — “/~’

(1if Ja path from v; to v; with all intermediate vertices from V
¢ define t;" =

. 0 otherwise

> t"=1=>(v;,v;) € E & t"=0 = (v;,v;) €E

« recursive definition for ;™ = ;™' (t,"*A t,;™") with t° = o;

42

Transitive Closure of a Directed Graph

T-CLOSURE (G)
» T =({;) Isann xnboolean matrix
fori — Itondo
forj«— Itondo
if1=jor(v;,v;) € E then
i1
else
tjj < 0
for m «— Itondo
fori<— Itondo
forj«— Itondo

G <t v (i Tyy)

43

Johnson’s Algorithm for Sparse Graphs

+ For sparse graphs it is attractive to think of running SSSP Dijkstra
from on every vertex to solve APSP

V x O(VIgV +E) =0(V?gV + EV)
if E=0(V), then the above is O(V?IgV)

But Dijkstra requires non-negative edge weights ...

Can we make all weights non-negative, while preserving the shortest
path structure of the original graph?

a4

Johnson’s Algorithm for Sparse Graphs

(1) Preserving shortest paths by edge re-weighting :

¢ L1:givenG=(V,E)witho:E—R
» leth: V — R be any weighting function on the vertex set
» defineo(w,h):E—Raso(u,v)=o(u,v)+hu)-h(v)
» letpy,=<v,,Vyq, ..., V,> beapath from v, to v,

(@) o(Pox) = o(Pok) +h (Vo) - h (v)
(b) ®(Pok) =0(Vo, V) IN (G, 0) & o(Pok) = %(VO’ Vi) In (G, ®)

(c) (G,) has a neg-wgt cycle < (G, o) has a neg-wgt cycle

45

Johnson’s Algorithm for Sparse Graphs

+ proof (a): o Pok) = 21 <i <k o(ViiiVi)
=< (o(Vig,Vv;) +h(vg)-h(v))
= leiskw(vi-l Vi)t <i <k (h(vg)-h(v))
= 0(Pye) + N (Vo) - N (Vi)

o proof (b): (=) show o(pg) =8 (Vg . Vi) = ®(Poc) =6 (Vg , V) by
contradiction.

» Suppose thatglshorter path p,, fromv, tov, in (G, ®), then
o(Pok) < ©(Pok)

@ due to (a) we have

* 0Py) +h (V) -h(v) = o(Py) < O(Pok) = o Pc) +h (Vo) - h (V)
o(Pox) +h (Vo) -h (V) < o(pgy) +h (Vo) -h(vy)
o(Pgr) < ©(Pgi) = contradicts that p,, is a shortest path in(G , ®)

46

Johnson’s Algorithm for Sparse Graphs

¢ proof (b): (<=) similar

¢ proof (c): (<) consideracyclec=<vy,Vy, ...,V ,=V,>.
Due to (a)
> 0(C) =Y, 540V, V)=o) +h (V) -h©)
=w(c)+h(vy)-h(vy)= o(c) sincev, = v,
> o(c) = o).
QED

47

Johnson’s Algorithm for Sparse Graphs

(2) Producing nonnegative edge weights by reweighting :

¢ given (G, o)withG=(V,E)andw: E —- R
construct an augmented graph (G, ®) withG = (V, E) and
o =E >R
» VV =V u {s} for some new vertex s ¢ V
»E=EuU {(sVv):veV}
» o UuVv)=o(UVv)VY @uVv)eEando(s,v) =0,V VveV

¢ vertex s has no incoming edges = |
» no shortest paths from u # s to v in G contains vertex s

» (G, ®) has no neg-wgt cycle & (G, ®) has no neg-wgt cycle

48

Johnson’s Algorithm for Sparse Graphs

+ suppose that G and G have no neg-wgt cycle

e L2: ifwedefineh (V) =8(,v) VveVinG and o
according to L1.

» we will have o(u,v) = o(u,v) + h(U) = h(v)>0 V v eV

proof : for every edge (u,Vv) € E
§(s,v)<d(s,u)+w(u, V) inG due to triangle inequality
h (v) <h (u) + o, V) = 0 < ou, v) + h(u) = h(v) = o, v)

49

Johnson’s Algorithm for Sparse Graphs

example :
0

0 v,
Q\
Vo= 3 g / \
—> 8 > V3
VAL
0 1
-4 - =(G,w)

50

Johnson’s Algorithm for Sparse Graphs
Edge Reweighting

51

Johnson’s Algorithm for Sparse Graphs
Edge Reweighting

52

Johnson’s Algorithm for Sparse Graphs

Computing All-Pairs Shortest Paths
+ adjacency list representation of G.

¢ returns n x n matrix D = (d;;) where

dij = 9

or reports the existence of a neg-wgt cycle.

53

Johnson’s Algorithm for Sparse Graphs

¢ JOHNSON(G,m)
» D=(dj) is an nxn matrix
» construct (G =(V,E), o) st.V=VU{s}; E=EU{(sV): WeV}
> o'(UVv)=ouyv), Vuv)eE & o@GVv)=0 VYveV
if BELLMAN-FORD(G, ®, s) = FALSE then
return “negative-weight cycle”
else
for each vertex v e V- {s} =V do
h[v] « d[v] » d[v] = & (s,v) computed by BELLMAN-FORD(G, ®,)
for each edge (u,v) € E do
(S(u,v) «— o(u,v) + h[u] = h[v] » edge reweighting
for each vertex u € V do . .
run DIJKSTRA(G, ®, u) to compute d[v] = & (u,v) forall vinV e (G,®)
for each vertex v e V do
dy, = dlv] = Ch[u] - h[v])
return D

54

Johnson’s Algorithm for Sparse Graphs

¢ running time: O (V?lgV + EV)
» edge reweighting
BELLMAN-FORD(G, »,s) : O(EV)
computing o values : O (E)
» |V|runs of DIJKSTRA: |V |x O(VigV +EV)
=0 (VAgV +EV);
PQ = Fibonaccl heap

55

	CS161:�Design and Analysis of Algorithms�����Lecture 16�Leonidas Guibas
	Outline
	Shortest Path
	Shortest-Path Variants
	Edge Relaxation
	Properties of Relaxation�
	Single-Source Shortest Paths in DAGs
	Dijkstra’s Algorithm For Shortest Paths
	Bellman-Ford Algorithm for Single Source Shortest Paths
	All Pairs Shortest Paths (APSP)
	All Pairs Shortest Paths (APSP)
	All Pairs Shortest Paths (APSP)
	Adjacency Matrix Representation of Weighted Graphs
	Shortest Paths via Dynamic Programming
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	Slide Number 18
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	SSSP and Matrix-Vector Multiplication
	SSSP and Matrix-Vector Multiplication
	SSSP and Matrix-Vector Multiplication
	SSSP and Matrix-Vector Multiplication
	SSSP and Matrix-Vector Multiplication
	Slide Number 31
	Improving Running Time Through Repeated Squaring
	Idea Behind Repeated Squaring
	A Different Way: the�Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Transitive Closure of a Directed Graph
	Transitive Closure of a Directed Graph
	Transitive Closure of a Directed Graph
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs �Edge Reweighting
	Johnson’s Algorithm for Sparse Graphs� Edge Reweighting
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs
	Johnson’s Algorithm for Sparse Graphs

