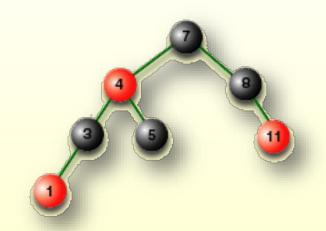
CS161: Design and Analysis of Algorithms



Lecture 16 Leonidas Guibas

Outline

 Last lecture: Single source shortest path algorithms

- Today: All pairs shortest path algorithms
 - shortest paths and matrix multiplication
 - Floyd-Warshall algorithm
 - transitive closure of a DAG
 - Johnson's algorithm for sparse graphs

Shortest Path

Shortest Path = Path of minimum weight between two vertices u and v

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \overset{p}{\leadsto} v\}; & \text{if there is a path from u to } v, \\ \infty & \text{otherwise.} \end{cases}$$

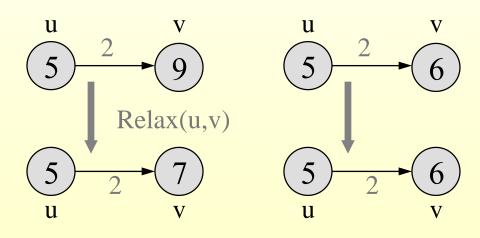
Distance from u to v =length of shortest path from u to v

Shortest-Path Variants

- Shortest-Path problems
 - Single-source shortest-paths problem (SSSP): Find the shortest path from s to each vertex v. (e.g. BFS)
 - Single-destination shortest-paths problem (SDSP): Find a shortest path to a given destination vertex t from each vertex v.
 - Single-pair shortest-path problem (SPSP): Find a shortest path from u to v for given vertices u and v.
 - All-pairs shortest-paths problem (APSP): Find a shortest path from u to v for every pair of vertices u and v.

Edge Relaxation

```
\begin{aligned} \textit{RELAX(u, v)} \\ & \text{if } d[v] > d[u] + w(u,v) \text{ then} \\ & d[v] \leftarrow d[u] + w(u,v) \\ & \pi[v] \leftarrow u \end{aligned}
```



d[u], d[v] denote our current estimates of their distances from s

Properties of Relaxation

Given:

- An edge weighted directed graph G = (V, E) with edge weight function (w:E → R) and a source vertex s ∈ V
- G is initialized by INIT(G,s)

```
Lemma 2: Immediately after relaxing edge (u,v), d[v] \le d[u] + w(u,v)
```

Lemma 3: For any sequence of relaxation steps over E,

- (a) the invariant $d[v] \ge \delta(s, v)$ is maintained
- (b) once d[v] achieves its lower bound, it never changes.

Single-Source Shortest Paths in DAGs

```
DAG-SHORTEST PATHS(G, s)

TOPOLOGICALLY-SORT the vertices of G

INIT(G, s)

for each vertex u taken in topologically sorted order do

for each v \rightsquigarrow Adj[u] do

RELAX(u, v)
```

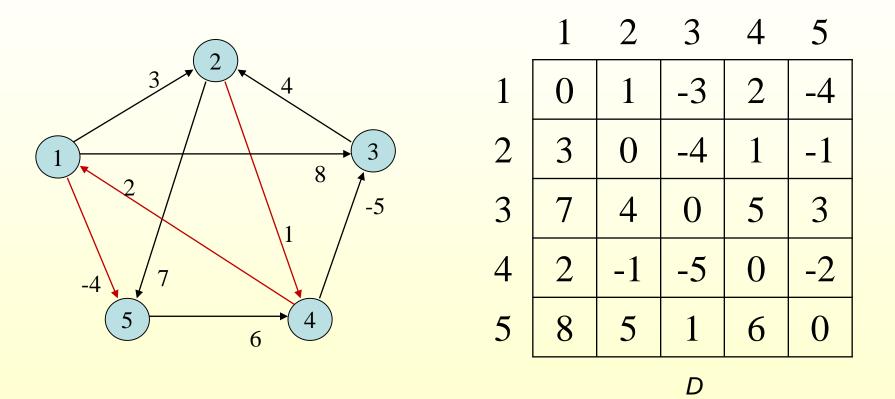
Dijkstra's Algorithm For Shortest Paths

```
DIJKSTRA(G, s)
      INIT(G, s)
      S←Ø
                 > set of discovered nodes
      Q←V[G]
      while Q ≠Ø do
         u←EXTRACT-MIN(Q)
         S←S U {u}
         for each v → Adj[u] do
           RELAX(u, v) > May cause
                       > DECREASE-KEY(Q, v, d[v])
```

Bellman-Ford Algorithm for Single Source Shortest Paths

```
BELMAN-FORD(G, s)
   INIT( G, s )
   for i \leftarrow 1 to |V|-1 do
       for each edge (u, v) \in E do
           RELAX( u, v )
   for each edge (u, v) \in E do
        if d[v] > d[u]+w(u,v) then
           return FALSE > 3 neg-weight cycle
   return TRUE
```

All Pairs Shortest Paths (APSP)



Matrix representation of graphs

All Pairs Shortest Paths (APSP)

- given : directed graph G = (V, E), weight function $\omega : E \to R$, |V| = n
- goal : create an $n \times n$ matrix $D = (d_{ij})$ of shortest path distances i.e., $d_{ij} = \delta(v_i, v_j)$
- trivial APSP solution: run a SSSP algorithm *n* times, using each vertex as the source.

All Pairs Shortest Paths (APSP)

- ▶ all edge weights are nonnegative : use Dijkstra's algorithm
 - PQ = binary heap : O ($V^2 lgV + EV lgV$) = O ($V^3 lgV$) for dense graphs
 - PQ = Fibonacci heap : O ($V^2 lgV + EV$) = O (V^3) for dense graphs
- negative edge weights : use Bellman-Ford algorithm
 - O (V^2E) = O (V^4) on dense graphs

Adjacency Matrix Representation of Weighted Graphs

 $ightharpoonup n \times n \text{ matrix } \mathbf{W} = (\omega_{ij}) \text{ of edge weights :}$

$$\omega_{ij} = \begin{cases} \omega(v_i, v_j) & \text{if } (v_i, v_j) \in E \\ \infty & \text{if } (v_i, v_j) \notin E \end{cases}$$

- ightharpoonup assume $\omega_{ii} = 0$ for all $v_i \in V$, because
 - no neg-weight cycle

⇒ shortest path to itself has no edge,

i.e.,
$$\delta (v_i, v_i) = 0$$

Shortest Paths via Dynamic Programming

- (1) Characterize the structure of an optimal solution.
- (2) Recursively define the value of an optimal solution.
- (3) Compute the value of an optimal solution in a bottom-up manner.
- (4) Construct an optimal solution from information constructed in (3).

Assumption: negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path:

- Consider a shortest path p_{ij}^{m} from v_i to v_j such that $|p_{ij}^{m}| \le m$
 - \blacktriangleright i.e., path p_{ij}^{m} has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple \Rightarrow m is finite \Rightarrow $m \le |V| 1$
- $i = j \Rightarrow |p_{ij}| = 0 \& \omega(p_{ij}) = 0$
- $i \neq j \implies$ decompose path p_{ij}^{m} into p_{ik}^{m-1} & $v_k \rightarrow v_j$, where $|p_{ik}^{m-1}| \leq m-1$
 - $ightharpoonup p_{ik}^{m-1}$ must be a shortest path from v_i to v_k by optimal substructure property.
 - ► Therefore, $\delta(v_i, v_i) = \delta(v_i, v_k) + \omega_{ki}$

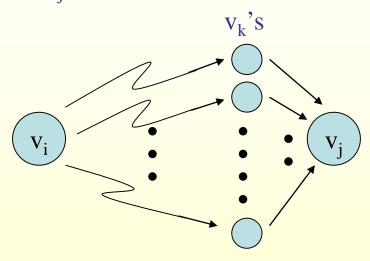
(2) A Recursive Solution to All Pairs Shortest Paths Problem:

- d_{ij}^{m} = minimum weight of any path from v_i to v_j that contains at most "m" edges.
- m = 0: There exist a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

• $m \ge 1$: $d_{ij}^{m} = \min \{ d_{ij}^{m-1}, \min_{1 \le k \le n \ Λ \ k \ne j} \{ d_{ik}^{m-1} + ω_{kj} \} \}$ $= \min_{1 \le k \le n} \{ d_{ik}^{m-1} + ω_{kj} \} \text{ for all } v_k ∈ V,$ since $ω_{ij} = 0$ for all $v_j ∈ V$.

$$d_{ij}^{m} = \min_{1 \le k \le n} \{d_{ik}^{m-1} + \omega_{kj}\} \text{ for all } v_k \in V$$

- to consider all possible shortest paths with $\leq m$ edges from v_i to v_j
 - ► consider shortest path with $\leq m$ -1 edges, from v_i to v_k , where $v_k \in R_{v_i}$ and $(v_k, v_i) \in E$



• note: $\delta(v_i, v_j) = d_{ij}^{n-1} = d_{ij}^n = d_{ij}^{n+1} \dots$, since $m \le n - 1 = /V / - 1$

$$d_{ij}^{m} = \min_{1 \le k \le n} \{d_{ik}^{m-1} + \omega_{kj}\} \text{ for all } v_k \in V$$

- (3) Computing the shortest-path weights bottom-up:
- given $W = D^1$, compute a series of matrices D^2 , D^3 , ..., D^{n-1} , where $D^m = (d_{ij}^m)$ for m = 1, 2, ..., n-1
 - ► final matrix D^{n-1} contains actual shortest path weights, i.e., $d_{ij}^{n-1} = \delta(v_i, v_j)$
- SLOW-APSP(W) $D^{1} \leftarrow W$ for $m \leftarrow 2$ to n-1 do $D^{m} \leftarrow \text{EXTEND}(D^{m\text{-}1}, W)$ return $D^{n\text{-}1}$

EXTEND (**D**, **W**) **P D** = (d_{ij}) is an n x n matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do d_{ij} $\leftarrow \infty$ for $k \leftarrow 1$ to n do d_{ij} $\leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\}$ return **D**

MATRIX-MULT(A,B)

► $\mathbf{C} = (c_{ij})$ is an n x n result matrix for $i \leftarrow l$ to n do for $j \leftarrow l$ to n do $c_{ij} \leftarrow 0$ for $k \leftarrow l$ to n do $c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$ return \mathbf{C}

- relation to matrix multiplication $C = A \times B$: $\mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \times \mathbf{b}_{kj}$,
 - ightharpoonup D^{m-1} \leftrightarrow A & W \leftrightarrow B & D^m \leftrightarrow C "min" \leftrightarrow "+" & "+" \leftrightarrow "x" & " ∞ " \leftrightarrow "0"
- Thus, we compute the sequence of matrix products

s, we compute the sequence of matrix products
$$D^{1} = D^{0} \times W = W \text{ ; note } D^{0} = \text{identity matrix,}$$

$$D^{2} = D^{1} \times W = W^{2} \text{ i.e., } d_{ij}^{0} = \begin{cases} 0 & \text{if } i = j \\ \\ 0 & \text{if } i \neq j \end{cases}$$

$$D^{3} = D^{2} \times W = W^{3}$$

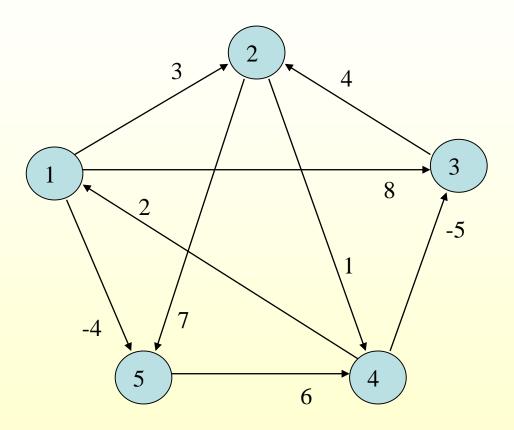
$$D^{n-1} = D^{n-2} \times W = W^{n-1}$$

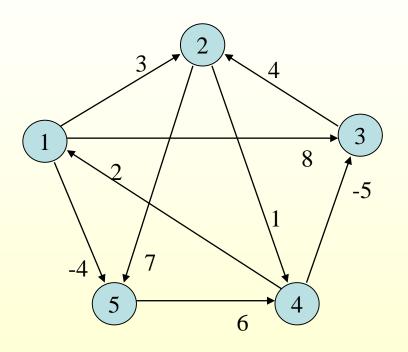
- running time : $\Theta(n^4) = \Theta(V^4)$
 - \triangleright each matrix product : $\Theta(n^3)$
 - \triangleright number of matrix products : n-1

$$\mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \times \mathbf{b}_{kj}$$

$$d_{ij}^{m} = \min_{1 \le k \le n} \{d_{ik}^{m-1} + \omega_{kj}\} \text{ for all } v_k \in V$$

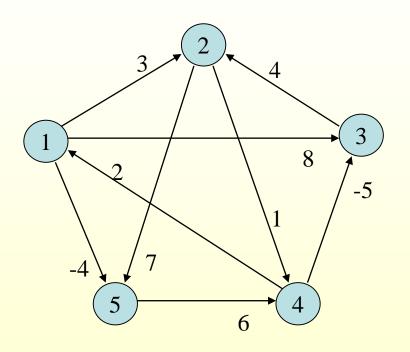
• Example





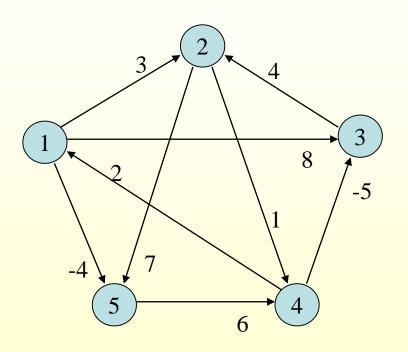
	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	8	-5	0	8
5	8	8	8	6	0

$$D^1 = D^0 W$$



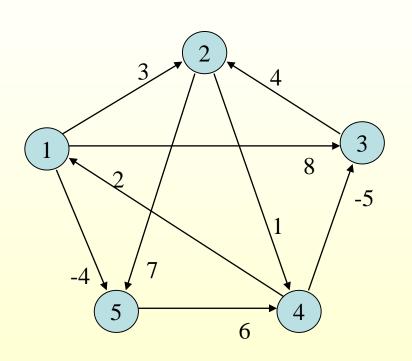
	1	2	3	4	5
1	0	3	8	2	-4
2	3	0	-4	1	7
3	8	4	0	5	11
4	2	-1	-5	0	-2
5	8	8	1	6	0

$$D^2 = D^1 W$$



	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0

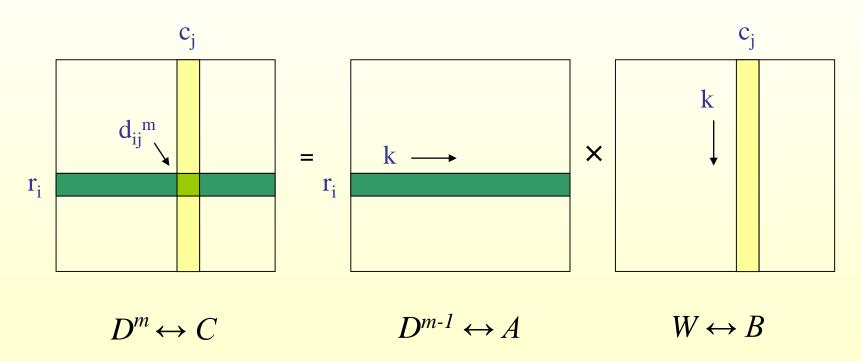
$$D^3 = D^2 W$$



	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^4 = D^3 W$$

relation of APSP to one step of matrix multiplication



- d_{ij}^{n-1} at row r_i and column c_j of product matrix $= \delta (v_i = s, v_j)$ for j = 1, 2, 3, ..., n
- row r_i of the product matrix = solution to single-source shortest path problem for $s = v_i$.
 - ► r_i of C = matrix B multiplied by r_i of A ⇒ $D_i^m = D_i^{m-1} x W$

• let
$$D_i^0 = d^0$$
, where $d_j^0 = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$

• we compute a sequence of n-1 "matrix-vector" products

$$d_i^1 = d_i^0 x W$$

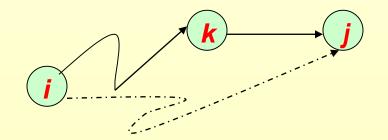
$$d_i^2 = d_i^1 x W$$

$$d_i^3 = d_i^2 x W$$

$$d_{ij}^{m} = \min_{1 \le k \le n} \{d_{ik}^{m-1} + \omega_{kj}\} \text{ for all } v_k \in V$$

 $d_i^{n-1} = d_i^{n-2} \times W$

Relaxing the edge (k,j)



- this sequence of matrix-vector products
 - ► same as Bellman-Ford algorithm.
 - ► vector $d_i^m \Rightarrow d$ values of Bellman-Ford algorithm after m-th relaxation pass.

 \Rightarrow *m-th* relaxation pass over all edges.

```
BELLMAN-FORD (G, v_i)

▶ perform RELAX (u, v) for

▶ every edge (u, v) ∈ E

for j \leftarrow l to n do

for k \leftarrow l to n do

RELAX (v_k, v_j)

RELAX (u, v)

d_v = \min \{d_v, d_u + \omega_{uv}\}
```

```
EXTEND ( d_i, W )

• d_i is an n-vector

for j \leftarrow 1 to n do

d_j \leftarrow \infty

for k \leftarrow 1 to n do

d_j \leftarrow \min \{ d_j, d_k + \omega_{kj} \}
```

Improving Running Time Through Repeated Squaring

- idea: goal is not to compute all D^m matrices
 - \blacktriangleright we are interested only in matrix D^{n-1}
- recall: no negative-weight cycles $\Rightarrow D^m = D^{n-1}$ for all $m \ge n-1$
- we can compute D^{n-1} with only $\lg(n-1)$ matrix products as

$$D^{1} = W$$
 $D^{2} = W^{2} = W \times W$
 $D^{4} = W^{4} = W^{2} \times W^{2}$
 $D^{8} = W^{8} = W^{4} \times W^{4}$

$$D^{2^{\lceil \lg(n-1) \rceil}} W^{2^{\lceil \lg(n-1) \rceil}} W^{2^{\lceil \lg(n-1) \rceil - 1}} W^{2^{\lceil \lg(n-1) \rceil - 1}}$$

This technique is called repeated squaring.

Improving Running Time Through Repeated Squaring

- FASTER-APSP (W) $D^{1} \leftarrow W$ $m \leftarrow 1$ while m < n-1 do $D^{2m} \leftarrow EXTEND (D^{m}, D^{m})$ $m \leftarrow 2m$ return D^{m}
- final iteration computes D^{2m} for some $n-1 \le 2m \le 2n-2 \Rightarrow D^{2m} = D^{n-1}$
- running time : $\Theta(n^3 \lg n) = \Theta(V^3 \lg V)$
 - ▶ each matrix product : $\overline{\Theta}(\mathbf{n}^3)$
 - ► # of matrix products : lg(n-1)
 - simple code, no complex data structures, small hidden constants in Θ-notation.

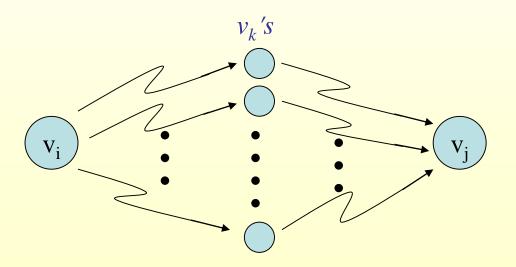
Idea Behind Repeated Squaring

• decompose p_{ij}^{2m} as p_{ik}^{m} & p_{kj}^{m} , where

$$p_{ij}^{2m}: v_i \sim v_j$$

$$p_{ik}^{m}: v_i \sim v_k$$

$$p_{kj}^{m}: v_k \sim v_j$$



A Different Way: the Floyd-Warshall Algorithm

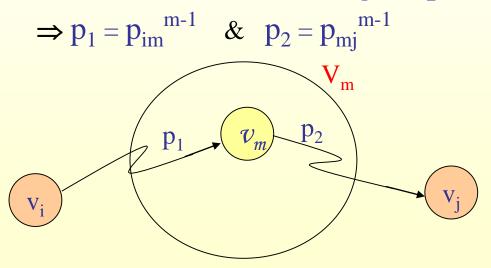
- assumption: negative-weight edges, but no negative-weight cycles
 (1) The Structure of a Shortest Path:
- Definition: intermediate vertex of a path p = < v₁, v₂, v₃, ..., v_k>
 any vertex of p other than v₁ or v_k.
- p_{ij}^{m} : a shortest path from v_i to v_j with all intermediate vertices from $V_m = \{ v_1, v_2, ..., v_m \}$
- relationship between p_{ij}^{m} and p_{ij}^{m-1}
 - \triangleright depends on whether v_m is an intermediate vertex of $p_{ii}^{\ m}$
 - case 1: v_m is not an intermediate vertex of $p_{ij}^{\ m}$ $\Rightarrow \text{ all intermediate vertices of } p_{ij}^{\ m} \text{ are in } V_{m-1}$ $\Rightarrow p_{ij}^{\ m} = p_{ij}^{\ m-1}$

Floyd-Warshall Algorithm

- case 2: v_m is an intermediate vertex of $p_{ii}^{\ m}$
 - decompose path as $v_i \sim v_m \sim v_j$

$$\Rightarrow p_1: v_i \wedge v_m \& p_2: v_m \wedge v_j$$

- by opt. structure property both $p_1 \& p_2$ are shortest paths.
- v_m is not an intermediate vertex of p_1 & p_2



Floyd-Warshall Algorithm

(2) A Recursive Solution to APSP Problem:

• $d_{ij}^{\ m} = \omega(p_{ij})$: weight of a shortest path from v_i to v_j with all intermediate vertices from

$$V_{m} = \{ v_{1}, v_{2}, ..., v_{m} \}.$$

- note: $d_{ij}^{n} = \delta(v_i, v_j)$ since $V_n = V$
 - ▶ i.e., all vertices are considered for being intermediate vertices of p_{ij}^{n} .

- compute d_{ij}^{m} in terms of d_{ij}^{k} with smaller k < m
- m = 0 : V₀ = empty set
 ⇒ path from v_i to v_j with no intermediate vertex.
 i.e., v_i to v_i paths with at most one edge

$$\Rightarrow d_{ij}^{0} = \omega_{ij}$$

• $m \ge 1$: $d_{ij}^{m} = \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

(3) Computing Shortest Path Weights Bottom Up:

```
FLOYD-WARSHALL(W)
      \triangleright D^0, D^1, ..., D^n are n \times n matrices
      for m \leftarrow 1 to n do
           for i \leftarrow 1 to n do
               for j \leftarrow 1 to n do
                d_{ii}^{m} \leftarrow \min \{d_{ii}^{m-1}, d_{im}^{m-1} + d_{mi}^{m-1}\}
      return D<sup>n</sup>
```

- maintaining $n extbf{D}$ matrices can be avoided by dropping all superscripts.
 - m-th iteration of outermost for-loop begins with $D = D^{m-1}$ ends with $D = D^m$
 - computation of d_{ij}^{m} depends on d_{im}^{m-1} and d_{mj}^{m-1} .

 no problem if $d_{im} & d_{mj}$ are already updated to $d_{im}^{m} & d_{mj}^{m}$ since $d_{im}^{m} = d_{im}^{m-1} & d_{mj}^{m} = d_{mj}^{m-1}$.
- running time : $\Theta(n^3) = \Theta(V^3)$ simple code, no complex data structures, small hidden constants

```
FLOYD-WARSHALL (W)
        \triangleright D is an n \times n matrix
        D \leftarrow W
        for m \leftarrow 1 to n do
           for i \leftarrow 1 to n do
                for j \leftarrow 1 to n do
                    if d_{ij} > d_{im} + d_{mj} then
                       d_{ii} \leftarrow d_{im} + d_{mi}
        return D
```

Transitive Closure of a Directed Graph

- G' = (V, E'): transitive closure of G = (V, E), where \triangleright E' = { (v_i, v_i): there exists a path from v_i to v_i in G }
- trivial solution : assign W such that $\omega_{ij} = \begin{cases} 1 \text{ if } (v_i, v_j) \in E \\ \infty \text{ otherwise} \end{cases}$
 - ► run Floyd-Warshall algorithm on W
 - $ightharpoonup d_{ii}^n < n \implies$ there exists a path from v_i to v_i , i.e., $(v_i, v_i) \in E'$
 - $ightharpoonup d_{ii}^{n} = \infty \Rightarrow \text{ no path from } v_i \text{ to } v_i$, i.e., $(v_i, v_j) \notin E'$ running time : $\Theta(n^3) = \Theta(V^3)$

Transitive Closure of a Directed Graph

- Slightly better $\Theta(V^3)$ algorithm: saves time and space.
 - ► W = adjacency matrix : $ω_{ij} = \begin{cases} 1 & \text{if } i = j \text{ or } (v_i, v_j) ∈ E \\ 0 & \text{otherwise} \end{cases}$
 - ▶ run Floyd-Warshall algorithm by replacing "min" \rightarrow " \lor " & "+" \rightarrow " \land "
- $\bullet \ \, \text{define } \, t_{ij}^{\ m} = \left\{ \begin{array}{l} 1 \ \text{if } \ \exists \, a \, \, \text{path from } v_i \, \, \text{to} \, \, v_j \, \, \text{with all intermediate vertices from } V_m \\ \\ 0 \, \, \text{otherwise} \end{array} \right.$
- recursive definition for $t_{ij}^{m} = t_{ij}^{m-1} \vee (t_{im}^{m-1} \wedge t_{mj}^{m-1})$ with $t_{ij}^{0} = \omega_{ij}$

Transitive Closure of a Directed Graph

```
T-CLOSURE (G)

ightharpoonup T = (t_{ii}) is an n \times n boolean matrix
         for i \leftarrow 1 to n do
             for j \leftarrow 1 to n do
                  if i = j or (v_i, v_i) \in E then
                       t_{ii} \leftarrow 1
                   else
                       t_{ii} \leftarrow 0
          for m \leftarrow 1 to n do
              for i \leftarrow 1 to n do
                   for j \leftarrow 1 to n do
                        t_{ii} \leftarrow t_{ii} \lor (t_{im} \land t_{mi})
```

• For sparse graphs it is attractive to think of running SSSP Dijkstra from on every vertex to solve APSP

$$V \times O(VlgV + E) = O(V^2lgV + EV)$$

if $E = O(V)$, then the above is $O(V^2lgV)$

But Dijkstra requires non-negative edge weights ...

Can we make all weights non-negative, while preserving the shortest path structure of the original graph?

- (1) Preserving shortest paths by edge re-weighting:
- L1 : given G = (V, E) with $\omega : E \to R$
 - ightharpoonup let $h: V \to R$ be any weighting function on the vertex set
 - ► define $\hat{\omega}(\omega, h) : E \to R$ as $\hat{\omega}(u, v) = \omega(u, v) + h(u) h(v)$
 - \blacktriangleright let $p_{0k} = \langle v_0, v_1, \dots, v_k \rangle$ be a path from v_0 to v_k

(a)
$$\hat{\omega}(p_{0k}) = \omega(p_{0k}) + h(v_0) - h(v_k)$$

(b)
$$\omega(p_{0k}) = \delta(v_0, v_k)$$
 in (G, ω) $\Leftrightarrow \hat{\omega}(p_{0k}) = \hat{\delta}(v_0, v_k)$ in (G, $\hat{\omega}$)

(c) (G, ω) has a neg-wgt cycle \Leftrightarrow (G, $\dot{\omega}$) has a neg-wgt cycle

- proof (a): $\hat{\omega}(p_{0k}) = \sum_{1 \le i \le k} \hat{\omega}(v_{i-1}, v_i)$ $= \sum_{1 \le i \le k} (\omega(v_{i-1}, v_i) + h(v_0) - h(v_k))$ $= \sum_{1 \le i \le k} \omega(v_{i-1}, v_i) + \sum_{1 \le i \le k} (h(v_0) - h(v_k))$ $= \omega(p_{0k}) + h(v_0) - h(v_k)$
- proof (b): (\Rightarrow) show $\omega(p_{0k}) = \delta(v_0, v_k) \Rightarrow \hat{\omega}(p_{0k}) = \hat{\delta}(v_0, v_k)$ by contradiction.
 - Suppose that a shorter path p_{0k} from v_0 to v_k in $(G, \hat{\omega})$, then $\hat{\omega}(p_{0k}) < \hat{\omega}(p_{0k})$
- due to (a) we have
 - $\omega(p_{0k}') + h(v_0) h(v_k) = \hat{\omega}(p_{0k}') < \hat{\omega}(p_{0k}) = \omega(p_{0k}) + h(v_0) h(v_k)$ $\omega(p_{0k}') + h(v_0) - h(v_k) < \omega(p_{0k}) + h(v_0) - h(v_k)$ $\omega(p_{0k}') < \omega(p_{0k}) \Rightarrow \text{contradicts that } p_{0k} \text{ is a shortest path in } (G, \omega)$

- proof (b): (<=) similar</p>
- proof (c): (\Leftrightarrow) consider a cycle $c = \langle v_0, v_1, \dots, v_k = v_0 \rangle$. Due to (a)

$$\stackrel{\wedge}{\omega}(c) = \sum_{1 \le i \le k} \stackrel{\wedge}{\omega}(v_{i-1}, v_i) = \omega(c) + h(v_0) - h(v_k)$$

$$= \omega(c) + h(v_0) - h(v_0) = \omega(c) \text{ since } v_k = v_0$$

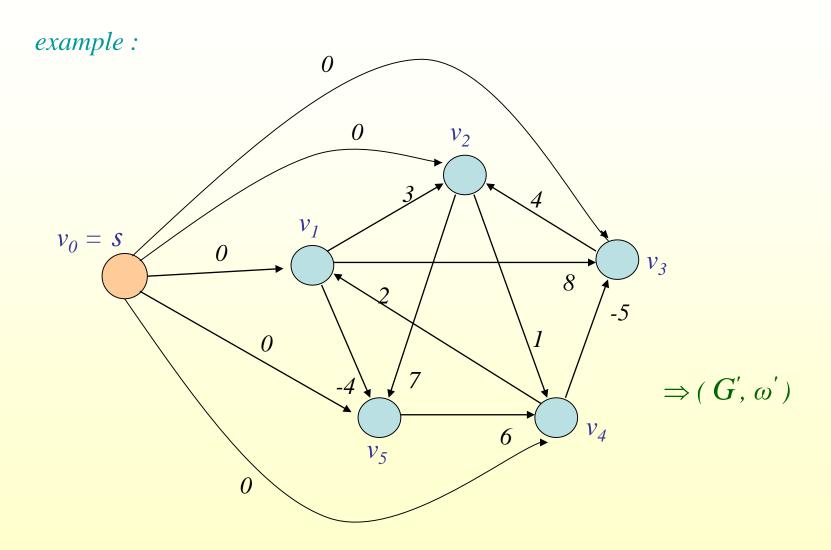
$$\triangleright \stackrel{\wedge}{\omega}(c) = \omega(c).$$

QED

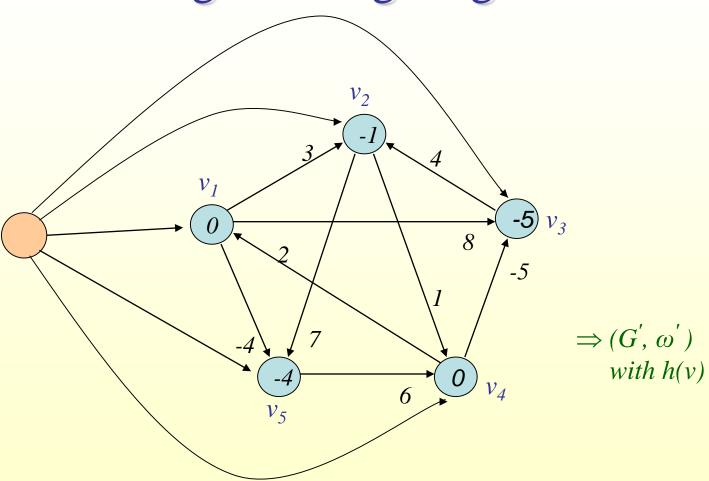
- (2) Producing nonnegative edge weights by reweighting:
- given (G, ω) with G = (V, E) and $\omega : E \to R$ construct an augmented graph (G', ω') with G' = (V', E') and $\omega' = E' \to R$
 - \triangleright V' = V \cup { s } for some new vertex s \notin V
 - ► $E' = E \cup \{ (s,v) : v \in V \}$
 - $\blacktriangleright \omega'(u,v) = \omega(u,v) \ \forall \ (u,v) \in E \ and \ \omega'(s,v) = 0 \ , \ \forall \ v \in V$
- vertex s has no incoming edges ⇒
 - \blacktriangleright no shortest paths from $u \neq s$ to v in G' contains vertex s
 - \blacktriangleright (G', ω ') has no neg-wgt cycle \Leftrightarrow (G, ω) has no neg-wgt cycle

- suppose that G and G' have no neg-wgt cycle
- L2: if we define $h(v) = \delta(s, v) \quad \forall v \in V \text{ in } G' \text{ and } \hat{\omega}$ according to L1.
 - ► we will have $\hat{\omega}(u,v) = \omega(u,v) + h(u) h(v) \ge 0 \quad \forall v \in V$

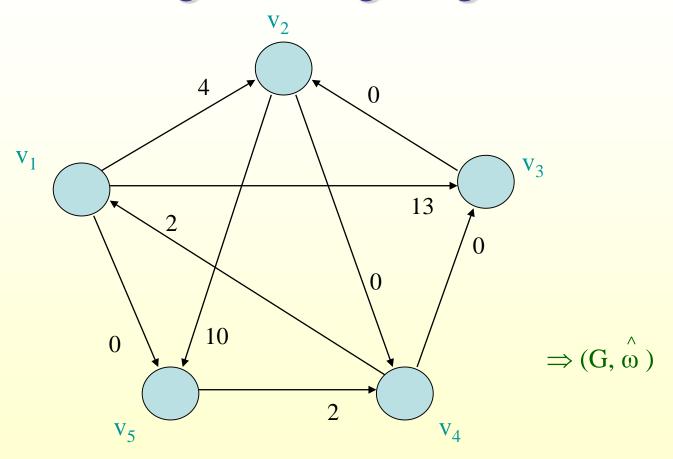
```
proof : for every edge (u, v) \in E \delta(s, v) \le \delta(s, u) + \omega(u, v) \text{ in } G' \text{ due to triangle inequality} h(v) \le h(u) + \omega(u, v) \Rightarrow 0 \le \omega(u, v) + h(u) - h(v) = \omega(u, v)
```



Johnson's Algorithm for Sparse Graphs Edge Reweighting



Johnson's Algorithm for Sparse Graphs Edge Reweighting



Computing All-Pairs Shortest Paths

- adjacency list representation of G.
- returns $n \times n$ matrix $D = (d_{ij})$ where $d_{ij} = \delta_{ij}$, or reports the existence of a neg-wgt cycle.

```
JOHNSON(G,ω)

ightharpoonup D=(d_{ij}) is an nxn matrix
    ► construct (G' = (V', E'), \omega') s.t. V' = V \cup \{s\}; E' = E \cup \{(s,v): \forall v \in V\}
    \blacktriangleright \omega'(u,v) = \omega(u,v), \ \forall (u,v) \in E \& \omega'(s,v) = 0 \ \forall v \in V
   if BELLMAN-FORD(G', \omega', s) = FALSE then
        return "negative-weight cycle"
   else
        for each vertex v \in V'- \{s\} = V do
            h[v] \leftarrow d'[v] \triangleright d'[v] = \delta'(s,v) computed by BELLMAN-FORD(G', \omega', s)
        for each edge (u,v) \in E do
            \mathring{\omega}(u,v) \leftarrow \omega(u,v) + h[u] - h[v] \blacktriangleright edge reweighting
        for each vertex u \in V do
            run DIJKSTRA(G, \hat{\omega}, u) to compute d[v] = \delta(u,v) for all v in V \in (G,\omega)
            for each vertex v \in V do
                 d_{uv} = d[v] - (h[u] - h[v])
    return D
```

- running time : $O(V^2 \lg V + EV)$
 - edge reweighting

```
BELLMAN-FORD(G', \omega', s) : O (EV) computing \hat{\omega} values : O (E)
```

► |V| runs of DIJKSTRA : | V | x O (VlgV + EV)

= O (V²lgV + EV);

PQ = Fibonacci heap