
CS161 Recitation Section 2
Stanford University Week of 18 January, 2016

Problem 1-1. (Constructing Recurrences)

(a) Construct the recurrence for the mergesort algorithm, and apply the master theo-
rem to show that it is an Θ(n logn) algorithm

(b) Construct the recurrence for the binary search algorithm, and apply the master
theorem to show that it is an Θ(logn) algorithm

Problem 1-2. the LIGHT side vs the DARK side (learning to interpret the master theorem).
This question is meant for the students to gain a better intuition behind the Master Theorem’s
3 cases

The following questions refer to the generalized recursion tree

(a) At each level j = 0,1,2,3.. logb(n), there are how many subproblems?

(b) At each level j = 0,1,2,3.. logb(n), what is the size of each subproblem?

(c) What is the total amount of work done at a given level j?

(d) When we compare the Rate of Subproblem Proliferations (dark side) to the Rate
of Work Shrinkage (light side) there are three options:
1) RSP = RWS (the force is finally balanced!)
2) RSP < RWS
3) RSP > RWS
For each of these situations, explain where is most of the work going to be done
(in the root level, at the leaves, or balanced work done at each level)



2 : Recitation Section 2

Problem 1-3. Find the overall asymptotic running time (i.e the value of T (n)) for the follow-
ing recurrences either by the master theorem or by substitution:

(a) T (n) = 7 T (n/3) + n2

(b) T (n) = 7 T (n/2) + n2 (Strassen’s method for matrix multiplication)

(c) T (n) = 3 T (n/2) + n2

(d) T (n) = 2n T (n/2) + nn

(e) T (n) = 0.5T (n/2) + 1/n

(f) T (n) = 2T (n/2) + n (try with substitution as well)

Problem 1-4. (Quicksort)

(a) Define the recursion depth of QuickSort to be the maximum number of successive
recursive calls before it hits the base case – equivalently, the number of levels in
the recursion tree. Note that the recursion depth is a random variable, which de-
pends on which pivots get chosen. What is the minimum-possible and maximum-
possible recursion depth of QuickSort, respectively?

Problem 1-5. (Powers)

(a) Consider the following pseudocode for calculating ab (where a and b are positive
integers). What is the complexity of this algorithm?

function FastPower(a, b):
if b = 1:

return a
else

c = a * a
ans = FastPower(c, b / 2)

if b is odd:
return a * ans

else:
return ans

end


