
CS161: Algorithm Design and Analysis Recitation Exercises Week 4
Stanford University Week of 25 January, 2016

Problem 3-1. (Deterministic-Quicksort)

(a) Recall from lecture the Randomized-Select algorithm to the select a rank(i) ele-
ment from an array.

function rand_select(A, p, q, i):
r = rand_partition(A, p, q)
k = r - p + 1 // rank of A[r]
if i == k:

return A[r]
else if i < k:

return rand_select(A, p, r - 1, i)
else:

return rand_select(A, r + 1, q, i - k)

What is the best, worst, and expected asymptotic runtime of this algorithm?

(b) Deterministic-Select, also from lecture, has a worst case runtime of θ(n). Now,
consider Quicksort below.

function rand_quicksort(A, p, q):
if p < q:

i = rand_int(p, q) // choose a pivot
r = partition(A, p, q, i)
rand_quicksort(A, p, r - 1)
rand_quicksort(A, r + 1, q)

Given Deterministic-Select, how would you modify Quicksort to bound the worst-
case runtime on any input to θ(n lgn)?

(c) Why is the above algorithm typically not used in practice?

Problem 3-2. (Deterministic-Select)

In lecture, we covered Deterministic-Select for groups of size 5. In this problem we generalize
the algorithm to groups of size k. Consider the pseudocode below:

pseudocode deterministic-select(A, k, i):
1. Divide A into groups of size k, and find group medians.
2. Recursively call deterministic-select to find the

median, x, of the n/k group medians
3. Partition around x. Let r = rank(x).

if r == i:
return x

else if i < r:



2 CS161: : Recitation Exercises Week 4

Recurse on left. A[:r-1].
else:

Recurse on right. A[r+1:].

(a) Give a recurrence for Deterministic-Select with groups of size 7.

(b) Argue that the algorithm with groups of size 7 runs in θ(n).

(c) Give a recurrence for Deterministic-Select with groups of size 3. Argue that the
algorithm is ω(n).

Problem 3-3. (Super Slow Search...)

You are given an array of A[1...n] of distinct integers. We will now consider various search
algorithms to find an element x.

(a) Define Random-Search:

function rand_search(A, n, x):
while True

i = rand_int(0, n)
if A[i] == x:

return i

What is the best, expected, and worst case runtime?

(b) Define Linear-Search:

function linear_search(A, n, x):
/* A = shuffle(A) */
for i in 1...n:

if A[i] == x:
return i

throw exception

What is the best, expected, and worst case runtime?

(c) Define Shuffle-Search. Uncomment the first line from Linear-Search in the previ-
ous part. What is the best, expected, and worst case runtime?

(d) Which searching algorithm do you prefer?

Problem 3-4. (Iterative Randomized-Select)

(a) What is the space complexity of Randomized-Select?

(b) Can we do better? Give an iterative algorithm that runs with O(1) space.


