
CS161: Algorithm Design and Analysis Recitation Section 4 (Week 5)
Stanford University Week of 1 February, 2016

Problem 1-1. (Counting Sort)

Algorithm 1 Counting-Sort

1: function COUNTING-SORT(A,B,k)
2: C[0..k]← new array of zeros
3: for j← 1 to A.length do
4: C[A[j]]←C[A[j]]+1
5: end for . C[i]: now contains the number of elements in A equal to i
6: for i← 1 to k do
7: C[i]←C[i]+C[i−1]
8: end for . C[i]: contains the number of elements in A no greater than i
9: for j← A.length to 1 do

10: B[C[A[j]]← A[j]
11: C[A[j]]←C[A[j]]−1
12: end for
13: end function

(a) What is the running-time of counting-sort?

(b) Is counting sort stable? Prove your claim.

(c) Would the algorithm remain correct if we used a more standard for loop from 1 to
A.length in lines 9-12? What effect on the result would there be in this case?

(d) How is counting-sort affected in practice by an input of relatively few integers
with a large range. i.e. k » A.length.

(e) Is there a linear time sorting algorithm that addresses this problem?

Problem 1-2. (K Largest Elements)

(a) Given an array of n integers, we want to find an algorithm to return the largest k
elements. Consider algorithm 2.
What is the time complexity of Naive-Top-K?

(b) Can this problem be solved more efficiently?

(c) What if the array is no longer composed of countable elements? How quickly can
you return the top k elements?

(d) Now again assume we have an input array of integers. How would you choose to
find the largest k elements?

2 CS161: : Recitation Section 4 (Week 5)

Algorithm 2 Repeatedly find the next largest element

1: function NAIVE-TOP-K(A,k)
2: topElems← []
3: for i← 1 to k do
4: max← Select(A,A.length− i)
5: topELems← topElems.append(max)
6: end for
7: return topElems
8: end function

Problem 1-3. (Heaps)

(a) Fill in the time complexities of the following operations on heaps:

• Heapify:
• HeapSort:
• HeapMaximum:
• HeapExtractMax:

(b) What height are the leaves of a heap?

(c) What is the maximum number of nodes at height h?

(d) Recall the BuildHeap algorithm. What is the time complexity of BuildHeap()?
Justify your answer.

Algorithm 3 Given an unsorted array A, make A a heap

1: function BUILDHEAP(A)
2: heapSize(A)← A.length
3: for j← bA.length/2c to 1 do
4: Heapify(A,j)
5: end for
6: end function

Problem 1-4. (Hashing Probability)

(a) What is the probability after placing the first 3 items into a hash map of k buckets
there are no collisions? Assume uniform hashing.

(b) What is the probability after placing n items into a hash map of k buckets there is
a collision? Assume uniform hashing.

(c) Guess and then calculate the probability from part (b) for n = 50 and k = 500?
How does the actually probability compare to your guess?

