Problem 1-1. (Interval Tree)

(a) Show how INTERVAL-SEARCH(T.root, $[6,7])$ operates on the red-black tree T in the following figure.

(b) Modify pseudocode LEFT-ROTATE to operate on nodes in an interval tree and update the max attributes in $O(1)$ time.
(c) Describe an efficient algorithm that, given an interval i, returns an interval overlapping i that has the minimum low endpoint, or T.nil if no such interval exists.
(d) Given an interval tree T and an interval i, describe how to list all intervals in T that overlap i in $O(\min (n, k \lg n))$ time, where k is the number of intervals in the output list.

Problem 1-2. (Amortized Analysis)
(a) Suppose we perform a sequence of n operations on a data structure in which the i th operation costs i if i is an exact power of 2 , and 1 otherwise.
Use aggregate analysis to determine the amortized cost per operation.
(b) Redo Part (a) using an accounting method of analysis.
(c) Redo Part (a) using a potential method of analysis.

