
CS161: Algorithm Design and Analysis Recitation Section 1
Stanford University Week of 15 January, 2018

Problem 1-1. (Motivation)

Exciting Examples of Algorithms:

(a) Protein Folding and the Schrodinger Equation - attempt to predict the 3D struc-
ture of proteins based on their amino acid sequence. If we could do this, it would
revolutionize the way we treat disease. While an algorithm derived from the
Schrodinger Equation exists, at present an efficient one does not exist. Hence,
it is more practical to just "let the universe compute the answer," i.e., wait and see
what happens, rather than attempting to a priori predict the outcome.

(b) Finance - being able to predict the stock price of a company based on past data
would be very exciting. Before investing millions of dollars, however, we abso-
lutely want to be sure that the algorithm we’re using is correct. Also need it to be
efficient (its not very useful if the algorithm needs 2 days to compute tomorrow’s
stock price).

(c) Google Maps (Uber, Doordash, Amazon Delivery, etc.) - computing shortest or
fastest paths and routes from one destination to another. We’ll be learning some
of these algorithms in this class!

(d) Security - examples include RSA public key-private key encryption for securely
transferring messages over an open channel, as well as internet security protocols
(HTTPS and SSL).

(e) Artificial Intelligence - robot navigation (A-Star algorithm), clustering algorithms
(K-means), classification algorithms (support vector machine, perceptron).

Problem 1-2. (Induction)

(a) The Implication Prove that if n2 +5n+1 is even for some n ∈ N, then

(n+1)2 +5(n+1)+1

is also even.
Solution:
We wish to show that if n2 +5n+1 is even for some n ∈ N, then (n+1)2 +5(n+
1)+1 is also even. If n2 +5n+1 is even for some n ∈ N, then that means that we
can write it as

n2 +5n+1 = 2m

for some m ∈ Z. Now, let us expand (n+1)2 +5(n+1)+1 into:

n2 +2n+1+5n+5+1

Rearranging:

2 CS161: : Recitation Section 1

[n2 +5n+1]+2n+6

Plugging in n2 +5n+1 = 2m we get:

2m+2n+6 = 2(m+n+3)

But this implies that (n+1)2 +5(n+1)+1 is even, because we have represented
it as 2 times some integer (namely, the integer m+ n+ 3. Note that m+ n+ 3 is
indeed an integer because m,n and 1 are all integers, and the integers are a ring
and hence closed under addition).

(b) The Base Case Does this prove that n2 + 5n+ 1 is even for any n ∈ N? What is
the moral of this exercise?
Solution:
No! Part 1 does not imply that n2 + 5n+ 1 is even for any N. The only thing we
have proved in part 1 is an implication, i.e. that if you manage to find some N such
that n2 +5n+1 is even, then we guarantee (n+1)2 +5(n+1)+1 is also even.
The important lesson here is, the information you get from an implication is only
tentative or conditional. In order to actually use it, you must also demonstrate the
information that the implication is contingent on, is also true (i.e. the base case).

Problem 1-3. (Recurrences)

(a) Consider the naive algorithm to calculate a factorial:

function Factorial(n):
if n == 0:

return 1
return n * Factorial(n - 1)

Write a recurrence for this algorithm, and state its complexity.
Solution:

T (n) =

{
Θ(1) if n = 0
T (n) = T (n−1)+Θ(1) otherwise

Complexity is Θ(n) (as long as we assume multiplication of arbitrarily large num-
bers is O(1))

(b) Consider this algorithm to calculate the n-th Fibonacci number:

function Fibonacci(n):
if n == 1 or n == 2:

return 1
return Fibonacci(n - 1) + Fibonacci(n - 2)

CS161: : Recitation Section 1 3

Write a recurrence for this algorithm, and state its complexity.
Solution:

T (n) =

{
Θ(1) if n = 1 or n = 2
T (n) = T (n−1)+T (n−2)+Θ(1) otherwise

Complexity is O(2n).

(c) Do you think this complexity could improve if you saved intermediate results?
Solution:
Yes. We can use a technique called memoization to cache results and skip redun-
dant computation. This changes the recursive algorithm to O(n).
Note that it is possible to compute Fibonacci numbers in logarithmic time; even
using memoization, this is not the algorithm you should write to efficiently com-
pute Fibonacci numbers.

Problem 1-4. (More practice with asymptotic notation)

(a) Let k ≥ 1, ε > 0, c > 1 be constants. For each blank, indicate whether Ai is in O,
o, Ω, ω , or Θ of Bi. More than one space per row can be valid.

A B O o Ω ω Θ

logk n nε

nk cn

2n 2n/2

nlogc clogn

log(n!) log(nn)

Solution:

A B O o Ω ω Θ

logk n nε X X
nk cn X X
2n 2n/2 X X
nlogc clogn X X X
log(n!) log(nn) X X X

(b) What’s the asymptotic runtime of the following algorithm, which takes as input a
natural number n?

function DoSomeLoops(n):
count = 0

4 CS161: : Recitation Section 1

For i in 1..n:
For j in 1..10:

For k in 1..n/2:
count += log(n)

return count

Solution:

Θ(n2)

.
The outer loop runs n = Θ(n) times, the first inner loop runs 10 = Θ(1) times
per iteration of the outer loop, and the next inner loop runs n/2 = Θ(n) times per
iteration of the first inner loop. Thats Θ(n)Θ(n)Θ(1) = Θ(n2)

Problem 1-5. (Bogosort)

Consider this clever sorting algorithm from xkcd.com/1185/:

(a) Is FastBogoSort a correct sorting algorithm? (i.e. does it return a correctly
sorted list for every possible input?)
Solution:
No. It only works if Shuffle happens to sort the list.

(b) Assume that we have a Θ(N) time algorithm for Shuffle1 and a Θ(N) time
algorithm for IsSorted. What’s the time complexity of FastBogoSort?
Solution:
Θ(n logn). The outer loop is executed logn times, and Shuffle and IsSorted
each take Θ(n). Thus, we have Θ(n logn).

(c) Assume that valid input to FastBogoSort contains only lists of numbers with-
out repeats. On input list of length n, what’s the probability that FastBogoSort
returns the correct answer?
Solution:

1Shuffling is a little trickier than it seems. If you’re interested, Google the Fisher-Yates shuffle.

CS161: : Recitation Section 1 5

For simplicity, we’re removing repeats so we don’t have to deal with lists that are
correctly sorted in more than one way. With this assumption, the probability of
success on each individual trial is 1

n! , and we run logn trials, so, from the binomial
distribution, we have

logn

∑
i=1

(
n
i

)(
1
n!

)i(
1− 1

n!

)n−i

Note that this can be bounded above using the union bound, or

logn

∑
i=1

1
n!

=
logn

n!

(d) An upper-bound for the solution to (c) is logn
n! . Is this bound O(logn

nn), Ω(logn
nn), or

both (Θ(logn
nn))?

Hint: use Stirling’s formula.

Solution:

lim
n→∞

logn
n!

/
logn
nn = lim

n→∞

nn

n!
By Stirling’s formula

= lim
n→∞

ennn

cnn√n
= lim

n→∞

en

c
√

n
= ∞

So
logn

n!
∈Ω

(
logn
nn

)
Problem 1-6. (Merge Sort and Insertion Sort)

(a) What’s the best case asymptotic efficiency for insertion sort? What kind of input
makes insertion sort efficient?
Solution:
If a list is already sorted, insertion sort runs in Θ(n) time. In general, insertion sort
performs better on partially sorted lists.

(b) What’s the best case asymptotic efficiency for merge sort? Does your answer
suggest that merge sort on some computer will sort all permutations of a list in the
same amount of time?
Solution:
Merge sort’s best case is the same as its worst case: Θ(n logn). However, this
doesn’t mean that, in practice, the same number of comparisons are made on an
arbitrary permutation of a list.

6 CS161: : Recitation Section 1

(c) Consider the list [4, 1, 3, 2]. Trace out the steps that insertion sort and
merge sort each take to sort the list. Assume that merge sort splits the list in the
middle.
Solution:
Merge sort:

[4, 1, 3, 2]
[4, 1] [3, 2]

[4] [1] [3] [2]
[1, 4] [2, 3]

[1, 2, 3, 4]

Insertion sort:

[4, 1, 3, 2]
[1, 4, 3, 2]
[1, 3, 4, 2]
[1, 2, 3, 4]

(d) At a new software engineering job, you’re writing a program to sort many lists
with hundreds of elements each. You cleverly chose to use merge sort, because
you know that it’s O(n logn) – much better than insertion sort, which is O(n2).
You look at logs for your servers, and you realize that you don’t have any memory
available and can’t afford more servers! What do you do?
Solution:
Use an in-place sort – i.e. a sorting algorithm that uses O(1) extra space. Insertion
sort works, but quicksort or heapsort would probably be better. Depending on the
domain and stability needs, other algorithms might work better. Variants of merge
sort with constant space also exist.

(e) Timsort is a (fairly complicated) combination of merge sort and insertion sort that
happens to be the default sorting algorithm in the Python programming language.
If you were to design a hybrid sorting algorithm like Timsort, how would you
combine merge sort and insertion sort?
Solution:
In general, insertion sort performs better on small lists because it has a smaller
constant factor. In addition, it works very quickly on lists that are already mostly
sorted.
One thing to do is to modify merge sort to use insertion sort on runs that are smaller
than some length ` and on longer runs that are already mostly sorted.

