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AbstractMany applications in Computer Graphics require fast and robust 3D collision detec-tion algorithms. These algorithms can be grouped into four approaches: space-timevolume intersection, swept volume interference, multiple interference detection andtrajectory parameterization. While some approaches are linked to a particular objectrepresentation scheme (e.g., space-time volume intersection is particularly suited toa CSG representation), others do not.The multiple interference detection approach has been the most widely used undera variety of sampling strategies, reducing the collision detection problem to multiplecalls to static interference tests. In most cases, these tests boil down to detectingintersections between simple geometric entities, such as spheres, boxes aligned withthe coordinate axes, or polygons and segments.The computational cost of a collision detection algorithm depends not only onthe complexity of the basic interference test used, but also on the number of timesthis test is applied. Therefore, it is crucial to apply this test only at those instantsand places where a collision can truly occur. Several strategies have been developedto this end: 1) to �nd a lower time bound for the �rst collision, 2) to reduce thepairs of primitives within objects susceptible of interfering, and 3) to cut down thenumber of object pairs to be considered for interference. These strategies rely ondistance computation algorithms, hierarchical object representations, orientation-based pruning criteria, and space partitioning schemes.This paper tries to provide a comprehensive survey of all these techniques froma uni�ed viewpoint, so that well-known algorithms are presented as particular in-stances of general approaches.Key words: Geometric algorithms, languages and systems, Collision Detection,Interference Tests
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1 IntroductionMany collision detection algorithms have been proposed in recent years within the �eldsof Computational Geometry, Robotics, and especially Computer Graphics. Some appeartailored to particular applications, others stem from theoretical concerns, and their diverseorigins and aims often hide the common ground on which they lie. This article tries tounravel this common ground.A recent survey [53] on the subject classi�es collision detection algorithms according to thegeometric object model used. The present paper is rather oriented towards a systematiccharacterization of the solving strategies, as explained below. The reader interested ina quick comparison of the most well-known algorithms can have a look at the table inhttp://brl.ee.washington.edu/BRL/shc/collide.htmComputer Graphics encompasses a broad set of applications related to Computer-AidedDesign, Virtual Reality and Physical Simulation that require fast collision detection. Thealgorithms developed in this context are above all intended to be of practical use. Con-trarily, the �eld of Computational Geometry seeks to synthesize algorithms with the bestpossible worst-case complexity, which in many cases entails the design of intrincate datastructures. Thus, while computational geometers and graphicists have a substantial over-lap of interest in geometry, their algorithms obey markedly di�erent purposes.Computational geometry algorithms often assume \general position" but real-world mod-els tend to have a lot of degeneracies such as coplanar or parallel faces. Thus, any assump-tion of \general position" is inappropriate in practical settings. Not only degeneracies, butalso \bad data", lead to challenging problems. For example, as noted in [40], polyhedralmodels generated by some widely used CAD systems tend to have various degrees ofnearly coplanar vertices, i.e., polygonal faces bounded by four or more vertices where thevertices only approximately lie on the same plane. And even worse, many models tend tohave self-intersections, i.e., they contain faces which intersect at places other than theirboundaries. As a consequence, practical collision detection algorithms are shaped not onlyby the application itself, but also by the challenging inputs arising in practice.The application largely delimits the kind of algorithms to be applied. For example, whilethe path taken by the moving object in Virtual Reality applications is not known a pri-ori, precisely speci�ed trajectories have to be checked for collision in rigid body physicalsimulation systems that involve the exact reproduction of mechanical processes. Thus,a trajectory-based approach, suitable in the latter case, would be useless in the formerone. Moreover, when the application allows it and for e�ciency's sake, a collision detec-tion algorithm might deliberately introduce error. For example, objects might be crudelyapproximated by cubes, spheres, polyspheres, etc., and complex trajectories decomposedinto simpler ones or simply discretized. Practical collision detection algorithms have longsought to exploit this tradeo� between solution quality and computational time. We de-vote an important part of this survey to these approximations.The paper is structured as follows. Section II shows that the available collision detectionapproaches lie within two main categories: geometric and algebraic, and explains howthose based on the former category apply two techniques: projection and sampling, or2



combinations of them. This overview makes clear that tests for static interference betweensimple geometric entities lie at the base of most detection approaches. Section III presentsthese tests. The e�ciency of a basic interference test does not guarantee that a collisiondetection algorithm based on it is in turn e�cient, because the number of times the test isapplied is another key factor. Thus, Section IV reviews the di�erent strategies to restrictthe application of the interference test to those instants (time bounds) and object parts(space bounds) at which a collision can truly occur. Finally conclusions are sketched inSection V.2 Approaches to collision detectionCollision detection admits several problem formulations, depending on the type of outputsought and on the constraints imposed on the inputs. The simplest decisional problem,that looking for a yes/no answer, is usually stated as follows: Given a set of objects anda description of their motions over a certain time span, determine whether any pair willcome into contact. More intricate versions require �nding the time and features involvedin the collision. Placing constraints on the inputs is a usual way of simplifying problems.Thus, often objects are assumed to be polyhedra, usually convex ones, and motions areconstrained to be translational or linear in a given parameter space.In the following subsections the four main approaches that have been proposed to dealwith the di�erent instances of the collision detection problem are described.2.1 Spatio-temporal intersectionThe most general representation of the collision detection problem is based on the extru-sion operation [13]. The extruded volume of an object is the spatio-temporal set of pointsrepresenting the spatial occupancy of the object along its trajectory. A collision betweentwo objects occurs if, and only if, their extruded volumes intersect (see Figs. 1 and 2) 2 .The extrusion operation is distributive with respect to the union, intersection and set dif-ference operations. This motivated the development of the extrusion approach in the con-text of Constructive Solid Geometry (CSG) representations. The mentioned distributiveproperty guarantees that an object and its extruded volume can be represented throughthe same boolean combination of volumetric primitives and extrusions of these primitives,respectively.The formal beauty of this approach is partially occluded by the high cost of its practicalimplementation, whose bottleneck is the generation of the 4D extruded volumes them-selves. Thus, for example, the extrusion of a linear subspace subject to a constant angularvelocity is bounded by a helicoidal hypersurface. For this reason, the implementation dealsonly with linear subspaces subject to piecewise translational motions [13].2 Almost all �gures that illustrate the di�erent issues in the text represent the corresponding2D situation for clarity. 3
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Fig. 1. Extruded and Swept Volumes. Time is explicitly taken into account. Since the extrudedvolumes interfere, a collision is detected. Below, the corresponding swept volumes in 2D areshown.
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Fig. 2. Extruded and Swept Volumes (cont.). Here no collision takes place, and therefore theextruded volumes do not interfere. Note that the corresponding swept volumes in 2D are thesame as those in the previous �gure.If the computation of the extruded volumes in 4D were simple, no other approaches wouldhave been introduced, since they are all aimed at avoiding this explicit computation.These approaches are either geometric or algebraic. Among the geometric ones, two mainalternatives have been proposed, namely projecting the extruded volume onto a lower-dimensional subspace {which leads to the swept volume approach{ and sampling alongthe trajectory, which boils down to the repeated application of an intersection detection4



algorithm. The algebraic approach consists of parameterizing the trajectory. Next, wedescribe these approaches.2.2 Swept volume interferenceThe volume containing all the points occupied by a moving object during a time periodis called the swept volume. If the swept volumes for all the objects in a scene do notintersect, then no collision between them will occur during the speci�ed time period.However, this is a su�cient, but not a necessary condition: It may happen that the sweptvolumes intersect but no collision takes place. This fact is shown in Figs. 1 and 2. In bothsituations the same swept volumes are generated, but only in the �rst situation collisionactually occurs.In order for the condition to be also necessary, the sweep has to be performed accordingto the relative motion of one object with respect to another one, for each pair of objects.In this case, while one of the objects is considered �xed, the volume swept out by theother one during its relative motion is computed. This can be computationally very costly,although now it can be ensured that, if the swept volume intersects with the �xed one,collision actually happens.The generation of the swept volume is also computationally expensive. This is the reasonwhy many works adhering to this approach deal with convex approximations of the sweptvolume and, only when the global swept volumes intersect, they proceed to split thetrajectory into pieces and to compute a convex approximation of the swept volume for eachpiece. For convex objects, Foisy and Hayward [29] have proved that the approximationsobtained in the successive splittings of the trajectory converge to the real swept volume.Simplifying alternatives are restricting the shapes and trajectories to very simple ones [41],and creating implicitly the swept volume from the volumes swept out by the primitivesof the boundary representation B-rep [10]. Recall that an object can be described by thesurface bounding it, so that the B-rep description of a polyhedra, for example, consists ofa list of its boundary primitives (vertices, edges, and faces) together with their topologicaladjacencies.2.3 Multiple interference detectionThe simplest way to tackle collision detection is to sample object trajectories and repeat-edly apply a static interference test. The way sampling is performed is crucial for thesuccess of the approach. A too coarse sampling may miss a collision, while a too �ne onemay be computationally expensive. The reasonable way out is to apply adaptive sampling.Ideally, the next time sample should be the earliest time at which a collision can reallyoccur. The di�erent sampling strategies di�er in the way this earliest time is estimated.The most crude estimation is the one relating a lower bound on the distance betweenobjects to an upper bound on their relative velocities [11,25].5



More sophisticated strategies take not only distance into account, but also directionalinformation. One such strategy [33] requires computing the closest points from two convexpolytopes (extended to general convex objects in [32]) at the current time sample, as wellas the line joining them. The �rst future instant at which the projections of the objects onthe line meet is taken as the next time sample (see Fig. 3). Therefore, this technique canbe viewed as a hybrid of sampling and projecting onto lower-dimensional subspaces (a 1Dsubspace in this case), according to the terminology introduced at the end of Section 2.1.
(a) (b)

(c) (d)Fig. 3. Adaptive time sampling. The starting position is depicted in (a), where the closest pointsand the line joining them are computed. The projections of the objects on this line meet atinstant (b), which is taken to be the next time sample. At this instant, the new closest points arecomputed (c), and the next time sample, where the polygons do actually collide, is determinedin the same way (d).Since the closest points between two objects lie always in their boundaries, it is usualpractice to resort to B-reps when following a multiple interference detection approach.However, as we shall see in Section 4, to con�ne the application of the interference testto those object parts susceptible of colliding �rst, spatial partitioning techniques such asoctrees and voxels have also been used in conjunction with this approach.2.4 Trajectory parameterizationThe collision instant can be analytically determined if the object trajectories are expressedas functions of a parameter (time). For example, consider the simple case in which a pointundergoes a linear motion and we want to detect if it intersects a �xed triangle in space.Then, the parametric vector equationp + (p0 � p)t = p0 + (p1 � p0)u+ (p2 � p0)v6



where p and p0 are the initial and �nal positions of the point and the pi's de�ne thetriangle, is set up and solved for the variables u, v, and t. u and v are parametric variablesfor the plane de�ned by the triangle, whereas t is a time variable which is 0 at the beginningof the simulation step, and 1 at the end. If 0 � t � 1 and u � 0 and v � 0 and u+ v � 1,then the point intersects the triangle during the time step [61]. This vector equationrepresents three scalar equations in three unknowns which can be reduced to a singlepolynomial in t.Conditions of intersection for general polyhedra following complex trajectories can be setup in the same way, the only di�erence being the degree of the polynomials in the variablet to be solved. When rotations are present, the resulting expressions contain trigonometricfunctions, but they can also be reduced to polynomials in a single variable by means of aproper change of variables.Depending on the trajectories, the degrees of the resulting polynomials may be arbitrar-ily high. Then, as polynomials of order 5 and above cannot be solved analytically, thedetermination of the collision instant can be computationaly very expensive for arbitrarytrajectories.In [18], the problem is tackled in a radically di�erent way: a trajectory connecting twoarbitrary con�gurations for a moving polyhedron in a polyhedral environment is designedso that the obtained polynomials are of degree 3; i.e., the lowest possible degree when themoving polyhedron translates and rotates simultaneously. A polyhedra interference testis expressed as a combination of parameterized basic contact functions, these functionsreecting the spatial relationships between the primitives of the B-rep of the polyhedra.The zeros of these functions delimit several time intervals, whose combination accordingto the interference test provides the desired set of intervals over which objects would beintersecting, if they were adhering to the prede�ned trajectories. While [18] uses a param-eterization based on quaternions, [46,72] follow the same approach using homogeneouscoordinates.In [73], the problem of detecting collisions between deformable models is regarded as aconstrained minimization problem, which is solved using interval Newton methods.In the context of Computer Graphics, a parameterized collision condition can be easilyderived for triangulated surface representations [61], which can be extended to non-rigidtime-dependent parametric surfaces [87].
3 Static interference detectionAll but the last approach described in the preceding section eventually require to apply astatic interference test between either 3D volumes or 4D ones. Here e�cient interferencedetection strategies are described, where the considered objects are convex or non-convexpolyhedra. Convexity plays a very important role in the performance of interference de-tection algorithms, and it is therefore used as criterion for classifying these strategies.7



3.1 Convex polyhedraAs pointed out in [52], intersection detection for two convex polyhedra can be done inlinear time in the worst case. The proof is by reduction to linear programming, which issolvable in linear time for any �xed number of variables. If two point sets have disjointconvex hulls, then there is a plane which separates the two sets. The three parametersthat de�ne the plane are considered as variables. Then, a linear inequality is attached toeach vertex of one polyhedron, which speci�es that the point is on one side of the plane,and the same is done for the other polyhedron (specifying now the location on the otherside of the plane).Moreover, convex polyhedra can be properly preprocessed [27] to make the complexity ofintersection detection drop to O(logn logm). Preprocessing takes O(n+m) time to builda hierarchical representation of two polyhedra with n and m vertices. The lowest level P1in the hierarchical representation is the original polyhedron, the highest one, say Pr, is atetrahedron (where r = O(logn)). At each level of the hierarchy, vertices of the originalpolyhedron are removed, such that they form an independent set (i.e., are not adjacent)in the polyhedron corresponding to the previous hierarchical level, and the correspondingedge and face adjacency relationships are updated. These hierarchical representations needto be computed only once, and they can be used for any interference query involving thesame polyhedra. The algorithm described in [27] actually computes the separation (i.e.,the minimum distance) between the polyhedra, interference is detected implicitly whenthis separation turns out to be null.Actually, most algorithms used to detect interferences between convex polyhedra rely onthe computation of the minimum distance and will be described in Section 4.4.1.3.2 Polyhedra with convex facesDisregarding the case in which one polyhedron is fully inside another one 3 , they intersectif their boundaries do. The detection of intersections between polyhedral surfaces reducesto detecting that an edge of one surface is piercing a face of the other surface. Since alledges are to be tested against all faces, the complexity of procedures following this schemeis necessarily O(nm). However, when faces are convex polygons, interference detectionbecomes quite simple and easy to implement, as explained below.This reduction of the interference problem to detecting edges piercing convex faces, for-mulated using the idea of predicates associated with basic contacts, was introduced in [17].There are two basic contacts between two polyhedra. One takes place when a face of onepolyhedron is in contact with a vertex of the other polyhedron (Type-A contact), and theother when an edge of one polyhedron is in contact with an edge of the other polyhedron(Type-B contact).3 Later it is shown that this case is no exception, since it can be dealt with using the sameprocedures. 8



It is possible to associate a predicate with each basic contact, which will be true or falsedepending on the relative location between the geometric elements involved. Let us assumethat face Fi is represented by its normal vector fi; edge Ej, by a vector ej along it; andvertex Vk by its position vector vk. Although this representation is ambiguous, any choiceof vector orientation leads to the same results in what follows.According to Fig. 4(a), predicate AVi;Fj , associated with a basic contact of Type-A, isde�ned as true when hfj;vi � vki > 0; (1)for any vertex Vk in face Fj, and false otherwise.According to Fig. 4(b), predicate BEi;Ej , associated with a basic contact of Type-B, isde�ned as true when hei � ej;vm � vki > 0; (2)Vm and Vk being one of the two endpoints of Ei and Ej, respectively, and false otherwise.
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(a)Fig. 4. Geometric elements involved in the de�nition of the predicates associated with Type-A(a) and Type-B (b) basic contacts.It can be checked [17] that if one of the following boolean expressionsOoutEi;Fj = :AVx;Fj ^AVy;Fj ^ ^Ek2edges(Fj)BEi;EkOinEi;Fj = AVx;Fj ^ :AVy;Fj ^ ^Ek2edges(Fj):BEi;Ek (3)is true, then edge Ei intersects convex face Fj, provided that its edges (Ek) are traversedcounter-clockwise (refer to Fig. 5). 9
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Fig. 5. Basic edge-face intersection test (convex faces).The case where one of the polyhedra is completely contained inside the other one canbe handled with the same tools, by drawing an arbitrary ray from any point on the �rstpolyhedron: if this ray intersects an odd number of faces of the second polyhedron (whichcan be checked with equation (3)), then inclusion exists.3.3 General polyhedraGeneral non-convex polyhedra are qualitatively more di�cult to handle. Therefore, mostauthors resort to decomposing them or their boundaries into convex parts (convex poly-hedra or polygons, respectively), and to apply interference detection algorithms to thoseparts. Few works try to cope directly with non-convex polyhedra, without decomposingthem. Moreover, note that, in general, it is not possible to express a non-convex curvedobject as the union of convex objects; for example, consider a block with a cylindrical holedrilled into it. This is the reason why the more accurate is the polyhedral aproximationof a curved object, the more complex is, in general, its decomposition into convex parts.3.3.1 Decomposition into convex partsIt is possible to apply the above algorithms to non-convex polyhedra just by decomposingthem into convex entities. Typically, decomposition is performed in a preprocessing step,and therefore has to be computed only once. The performance of this step is a tradeo�between the complexity of its execution and the complexity of the resulting decomposition.For example, the extreme case of solving the minimum decomposition problem is known tobe NP-hard in general [3]. On the other hand, algorithms such as that in [19] can alwayspartition a polytope of n vertices into at most O(n2) convex entities.Some interference detection algorithms work exclusively with convex polyhedra, othersneed only the faces of the polyhedron to be convex. In the �rst case, preprocessing willconsist in a solid decomposition of the non-convex polyhedra, the output consisting ofa set of smaller convex polyhedra (see [22,6]), whereas in the second case only a sur-face decomposition algorithm will be needed [21,20]. In any case, a number of additional10



�ctitious entities are created, that have to be considered in the intersection tests.3.3.2 Direct approachIt has long been known [10] that, even for non-convex faces, a simple two-step test su�cesto detect whether an edge intersects a face. First, check if the edge endpoints are onopposite sides of the face plane. If so, check whether the point of intersection between theedge and the face plane is located inside the face, by simply casting a ray from this pointand determining how many times the ray intersects the polygon. Then, if this numberis odd, intersection does exist (odd-parity rule). Note that the latter check correspondsdirectly to solving a point-in-polygon problem, for which several alternatives, di�erentfrom that of shooting a ray, have been proposed [63], p. 239.As mentioned in the preceding section, the application of this test to all edge-face pairsleads to an O(nm) complexity. Thus, a quadratic number of intersection points may needto be computed to ascertain that there is no intersection between two polyhedra. A wayto avoid these intersection computations is to reduce the test to computing the signs ofsome determinants [76], as in many other problems arising in Computational Geometry[2].
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Fig. 6. Basic edge-face intersection test (general faces).Consider a face from one polyhedron, de�ned by the ordered sequence of vertices aroundit, represented by their position vectors p1; : : : ;pl, expressed in homogeneous coordinates(that is, pi = (pxi; pyi; pzi; 1)), and an edge from the other, de�ned by its endpoints h andt. Then, consider a plane containing the edge and any other vertex, say v, of the samepolyhedron, so that all edges in the face whose endpoints are not on opposite sides of thisplane are discarded. In other words, we de�ne, according to Fig. 6, s := sign jh t v pij :Then, if pi and pi+1 are on opposite sides, s should have a di�erent sign from that ofjh t v pi+1j.It can be checked [76] that, if the number of edges straddling the plane and satisfying11



s � sign jh t pi pi+1j > 0 is odd, then the face is intersected by the edge. Actually, thisis a reformulation of the odd parity rule that avoids the computation of any additionalgeometric entities such as those resulting from plane-edge or line-edge intersections.The two special cases in which the arbitrary plane intersects at one vertex of the face or itis coplanar with one of the edges lead to determinants that are null. Actually, equivalentsituations also arise when the ray shooting strategy is used. In order to take them intoaccount, a simple modi�cation of the odd parity rule has to be introduced as in [10].It is also worth mentioning that, if the arbitrary point v is a vertex of one of the two facesin which the edge lies, di�erent from its endpoints, the above approach is a generalizationof Canny's predicates, since these predicates can also be expressed in terms of signs ofdeterminants involving vertex locations [76].Thus, in order to decide whether two non-convex polyhedra intersect, only the signs ofsome determinants involving the vertex location coordinates are required. Since the signsof all the involved determinants are not independent, it is reasonable to look for a setof signs from which all other signs can be obtained. This is discussed in [75] through aformulation of the problem in terms of oriented matroids.4 Strategies for time and space boundingEven if a basic interference test is made very e�cient, as described in the preceding section,the collision detection algorithm can still be computationally expensive if the basic testhas to be applied many times. Thus, the key aspect of any collision detection scheme is torestrict as much as possible when and where this test is applied, by taking advantage ofthe objects' geometry and the objects' dynamics, if this information is available. Knowinghow the objects are moving and how far away they are from one another, it is possible tobound the time interval where the collision is likely to occur. Therefore, it is important todetermine quickly the distance between objects. On the other hand, if the complexity ofthe objects is high, it is desirable to restrict the search for collisions to those object partsthat may actually collide. Finally, if there are many moving objects in the scene, meansto avoid having to check every pair of objects for collision need to be provided. These arethe issues of the next subsections.4.1 Distance computation for collision time boundingSpherical representations are appealing because the elementary distance calculation be-tween two spheres is trivial. The problem rather consists in determining which spheres ofthe representation have to be tested. In [78] objects are described in terms of sphericalcones (generated by translating a sphere along a line and changing its radius) and spher-ical planes (which are obtained by translating a sphere in two dimensions, and eventuallychanging also its radius). These primitives can also be viewed as a collection of spheres.Any distance can be expressed as a combination of the distances between two spherical12



cones and between a sphere and a spherical plane.In [70], ellipsoids are used to approximate convex polyhedra. A free margin function of oneellipsoid with respect to the other is then computed. This function behaves in a mannersimilar to the euclidean distance, except in that it is negative (instead of zero) as theellipsoids interfere, and it is not symmetric in the general case.Computing the distance between implicit and parametric surfaces is a very involved prob-lem in general. Basic approaches to compute the closest points of two free-form objectsneglect the fact that these points satisfy the necessary condition that their normals arealigned and opposite in direction. In [77] this constraint is used to obtain a measure ofpenetration distance, in the case that both objects intersect.Most distance computation algorithms have been developed for convex polyhedra. Someexploit speci�c features of polyhedra and therefore cannot be used with other types ofgeometric models. Others, like the method explained in [34], can be used with spherical[38] or other non-polytopal surface descriptions [32]. These algorithms follow two mainstreams, namely the geometric and the optimization ones, which are the objects of thenext subsections.4.1.1 The geometric streamThe idea is to determine the closest points of two polyhedra, and then compute theeuclidean distance between them. Three methods for determining the closest points havebeen proposed, two of them proceed by expanding an incremental representation in thedirection of the minimum distance, while the third navigates along the boundaries ofthe polyhedra to �nd the closest points. These methods are described in the followingparagraphs.Using Dobkin and Kirkpatrick's hierarchical polyhedral representation (described in Sec-tion 3.1), distance computation can be performed in optimal O(logn logm) time [27].Every step in the closest points search procedure corresponds to a level in the hierarchicalrepresentation. In the �rst step, the closest points of two tetrahedra (the lowest level inthe hierarchy) are trivially determined. Now, consider the direction of the segment thatjoins the closest points found at a given step. The two planes perpendicular to this direc-tion that touch each polyhedron (at the level expanded so far) bound the zone where thenext closest pair has to be searched for. The intersection of this zone with the polyhedraexpanded at the next level may consist of either two simplices, one simplex or the emptyset. If the closest points are not the same as in the previous step, then at least one ofthem belongs to one of these simplices. Therefore, every search step is restricted to atmost two simplices. The number of steps is bounded by logn � logm. Figure 7 may helpunderstand this procedure.The Minkowski di�erence MP;Q = fp � qjp 2 P; q 2 Qg of two polytopes P and Q hasbeen used in distance computation algorithms [16], exploiting the fact that the distancebetween P and Q is equal to that from MPQ to the origin (Fig. 8). Since the complexityof computing the entireMP;Q is quadratic, a directional construction of this set, similar tothat used by Dobkin and Kirkpatrick, has been proposed [34]. Starting from an arbitrary13



Fig. 7. The hierarchical representation allows to build up and search only those parts of thepolygons where the closest points can be found.tetrahedron contained in MP;Q, vertices closest to the origin in the direction of minimumdistance are added one at a time, while non-relevant vertices are deleted, so that thesearch for the point closest to the origin is always performed on a simplex, as shown inFig. 9. The \vertex-selection" part of the algorithm can be done in linear time: a singledirection is tested over the set of vertices of one of the original polyhedra and the oppositedirection over the vertices of the other one.
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Fig. 8. The Minkowski di�erence MP;Q (dashed line) can be constructed by taking the convexhull of the points resulting from subtracting the vertices of Q from the vertices of P (thin lines).(a) The distance between P and Q (dotted line) is the same as that from the origin to MPQ. (b)If P and Q are interfering, the origin will be within MPQ.An alternative to the incremental construction of data structures, for speeding up distancecomputation, is to navigate along the boundaries of the involved polyhedra in the direc-tion of decreasing distance. The key notion here is that of Voronoi region (refer to Fig. 10):14
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Fig. 9. (a) The closest point from the Minkowski polygon to the origin 0 has to be determined.(b) The �rst simplex is chosen arbitrarily, and the segment 09 realizing the minimum distance iscomputed. (c) The vertex 6 whose projection on this segment is closest to the origin is selected,vertex 1 is deleted, and the new direction realizing the minimum distance is computed. (d) Thenext vertex selected, 7, turns out to be the closest point from the Minkowski polygon to the origin.Every feature (vertex, edge or face) of a polyhedron has associated one such region, con-sisting of all the points that are closer to it than to any other feature. The Voronoi regionsfor rectangular boxes were introduced in [58], and extended to convex polyhedra in [52],where an incremental algorithm for distance computation was proposed. The algorithmworks as follows. First, two arbitrary features are selected and the closest points betweenthem are obtained. If each of the two points belongs to the Voronoi region of the otherfeature, then they are actually the sought closest points between the polyhedra and theprocedure stops. If not, each point has to be closer to another neighboring feature, whichis selected, and these steps are repeated until the condition of inclusion in the respectiveVoronoi regions is met. This algorithm is linear in the total number of features. Note that,if the polyhedra are intersecting, the algorithm would go into a cyclic loop. To overcomethis di�culty, some authors have extended the space partition to the interior of the poly-hedron, by de�ning pseudo-Voronoi regions whose boundaries are faces determined by thecentroid of the polyhedron and its edges [54,24,68,44]. These pseudo-Voronoi regions areused only to determine if the polyhedra interpenetrate or not. V-Clip [59] does also handlethe case where the polyhedra interpenetrate and is very robust in both cases. It avoidsthe explicit computation of the closest points between features, by using simple clippingoperations together with scalar derivative tests. The code is simple and its implementationdoes not require to specify any numerical tolerance.In [52], another important point is addressed: consider that the distance between twopolyhedra has to be computed as they move along a �nely discretized path. The closestfeatures do not change often, and a change almost always involves neighboring features,15
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FFig. 10. Voronoi regions of a vertex (a), an edge (b), and a face (c).due to the convexity of the polyhedra and the small discretization step. Therefore, notan arbitrary pair of features, but the closest features at the previous step are taken asinitial features for the next step. Simple preprocessing of the polyhedra, so that everyfeature has a constant number of neighboring features, allows the distance computationalgorithm, once initialized, to run in expected constant time.In [14,15,82], this ability to track the distance between two convex polyhedra was alsoanalyzed for the algorithm described in [34], showing that a minor modi�cation also givesit a expected constant execution time.4.1.2 The optimization streamDistance is viewed here as a quadratic function to be minimized, under linear constraintsdue to the convexity of the polyhedra. Formally, in [7], the function f(p; q) = kp� qk2=2is minimized subject to the linear constraints hp; nPi i � dPi ; i = 1; � � � ; kP and hq; nQj i �dQj ; j = 1; � � � ; kQ, where these constraints mean that p 2 P and q 2 Q, with the polyhedraP and Q being described as intersections of halfspaces. Rosen's gradient projection algo-rithm is used. At each step, the active constraints are determined (those where equalityholds, with a certain tolerance) and Kuhn-Tucker conditions are used to test whether theglobal minimum has been attained. If this is not the case, the coe�cients of the Kuhn-Tucker conditions are used to �nd the new search direction. There are two alternativesfor obtaining the starting points: to apply a simplex minimization subalgorithm alongthe direction de�ned by the centroids of the polyhedra, or to obtain the points where thesegment joining the centroids intersects the boundaries of the polyhedra.In applying Rosen's gradient projection method as Bobrow did, a convergence problemmay occur, as stated in [88]. This problem is called the zig-zag phenomenon and it appears16



when the Kuhn-Tucker conditions are satis�ed alternatively at each polyhedron. Thishappens because a zero vector is given as search direction on the polyhedron where theKuhn-Tucker conditions are satis�ed. The solution proposed by these authors is to consideras search direction for this polyhedron the projection of the search direction for the otherpolyhedron on the active constraints of the �rst one, instead of the zero vector, as shownin Fig. 11.
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(a) (b)Fig. 11. The zig-zag phenomenon (a) is avoided if the projection of Sp1 on the active constraintof Q is taken as the search direction Sq1 (b).Certain quadratic optimization problems can be solved in linear time, as shown in [57].In particular, as already mentioned in Section 3.1, Lin and Canny [52] proved that thecomputation of distances between convex polyhedra is one such problem. In [71] thecomplexity of computing other measures of proximity between polyhedra are discussed.The described algorithms based on optimization techniques have not been proved to besuperior to those based on geometric considerations which, in practice, have become theprevalent ones in most implementations, mainly the one described in [52] because of itsconceptual simplicity.No work has been devoted speci�cally to distance computation between non-convex poly-hedra. In the context of collision detection, non-convex objects are usually approximatedby simpler convex shapes, and a conservative lower bound on the distance is thus obtained.Some authors that deal with convex polyhedra mention the possibility of extending theiralgorithms to non-convex ones by decomposing them into convex entities, as explainedin Section 3. Unfortunately, if the number of generated convex entities is important, alarge number of pairwise distances have to be computed, and although the individualobjects are simpler, the net result is an important increment in the global complexity. Asa consequence, it is important to restrict the pairwise distances to be computed to thoseentities included in regions most likely to collide. The way these regions can be e�cientlycomputed is described in the next section.4.2 Bounding collision areas in objectsThree strategies can be followed to focus the search for collisions on relevant portions ofthe objects. One is to exploit a hierarchy of bounding volumes, another is to determineforefront features in the direction of motion, and the third is to exploit temporal coherenceto keep track of closest points. Hierarchical bounding can be applied to both volume and17



boundary representations, while the the latter two strategies are speci�cally suited toboundary representations.4.2.1 Hierarchical volume boundingThe idea behind the approaches using a hierarchy of bounding volumes is to approxi-mate the objects (with bounding volumes) or to decompose the space they occupy (usingdecompositions), to reduce the number of pairs of objects or primitives that need to bechecked for contact. Two main advantages of these approaches must be highlighted: (a)in many cases an interference or a non-interference situation can be easily detected at the�rst levels in the hierarchy, and (b) the re�nement of the representation is only necessaryin the parts where collision may occur. Space and object partitioning representations forcollision detection are surveyed next.Octrees [37] or octree-like structures [4], BSP-trees [62], brep-indices [9], tetrahedralmeshes [49], and regular grids [31] are all examples of spatial partitioning represen-tations. By dividing the space occupied by the objects, one needs to check for contactbetween only those pairs of objects (or parts of objects) that are in the same or nearbycells of the decomposition. Using such decompositions in a hierarchical manner can fur-ther speed up the collision detection process. Octrees and BSP-trees have been the mostwidely used. As their names indicate, octrees recursively partition cubes into octants, andBSP-trees recursively cut the space by hyperplanes. The octree representation allows toavoid checking for collision in those parts of space where octants are labeled \empty",that is, those entirely free of objects. If a \full" (totally occupied by an object) or \mixed"(partially occupied) octant is inside a \full" one of another object, interference occurs be-tween them. Only if a \full" or \mixed" octant is inside a \mixed" one, the representationhas to be further re�ned. The natural octree primitive is a cube [1,39], but there existalso models based on the same idea where spheres are used, as octant-including volumes[42] or within a di�erent space subdivision technique, where the subdivision branchingis 13 instead of 8 [55]. BSP trees [74] can be considered a crossing between octrees andboundary representations. In them partitioning is not restricted to be axis-aligned, asin octrees, and therefore transformations (orientation changes, for example) can be sim-ply computed by applying the transformation to each hyperplane, without rebuilding thewhole representation.Object partitioning representations are used in the collision detection context tosimultaneously attain the following three goals: (a) approximate tightly the input primi-tives; (b) admit a rapid intersection test to determine if two bounding volumes overlap;and (c) be updated quickly when the primitives (and consequently the bounding vol-umes) are rotated and translated in the scene. Unfortunately, as recognized in [40], theseobjectives are usually in conict, so a balance among them must be reached.Commonly used object partitioning representations use hierarchies of spheres [26,56,69,65,43]or spherical shells [8,50] for bounding at di�erent resolution levels. Inner and outer boundsare often used.Volume bounding strategies can be used in conjunction with boundary representations.Hierarchies of volumes enclosing boundary features permit focussing on those susceptible18



of interfering. Thus, octrees have been used to build bounding box hierarchies aroundfeatures of the polyhedron belonging to its convex hull and around concavities of non-convex polyhedra [68]. Once intersection has been detected between the convex hulls oftwo polyhedra, a sweep and prune algorithm is applied to traverse the hierarchies upto the leaf level, where overlapping boxes indicate which faces may intersect, and exactcontact points can be quickly determined.In cluttered environments, oriented bounding boxes (OBB) perform better than axis-aligned boxes or spheres, as they �t the objects tighter and, therefore, less intersectionsbetween bounding volumes are reported. An OBB tree is used in [35] to represent poly-hedra with triangulated boundaries. Overlaps between OBBs are rapidly determined byperforming 15 simple axis projection tests (about 200 arithmetic operations), as provedby the authors through their separating axis theorem. Routines for building OBB trees,as well as for performing fast overlap tests between them can be found in the RAPID in-terference detection package [35]. OBBs have also been used in [31] where, if interferencebetween boxes is not discarded, OBBs are further subdivided into voxels and, if needed,the interference test is �nally applied to boundary features of objects.On the other hand, a hierarchy based on axis-aligned bounding boxes (AABB) has theadvantage that the intersection test between each pair of AABB trees is not orientationdependent, as is the case of OBB trees. In other words, the boxes in AABB trees need tobe projected on the coordinate axes only once, whereas for each pair of boxes of OBB treesundergoing an intersection test, one box has to be projected onto the axes of the otherone. Furthermore, AABB trees need less memory and are faster to build, and are evenfaster to update [81], which makes them specially suitable for deformable models. SOLIDis a collision detection library that uses AABB trees for determining possible collisions ina scene composed of polygonal objects that may include complex deformable models [83].Hierarchies of AABBs are also used in the context collision detection between deformablemodels in [45], where the problem of self-intersections is also considered. Self-intersectionsmay be frequent in highly deformable models due to bending and wrinkling. This problemis treated in [86] where a surface hierarchy that captures the adjacency relationships isproposed. In [85] this hierarchical representation combined with a simple hierarchy ofbounding boxes is used for handling both self-intersections and collisions between di�erentobjects.The choice of \discrete orientation polytopes" (k�dops) as bounding volumes was madein [40] to attain a compromise between the relatively poor tighness of bounding spheresand AABBs, and the relatively high cost of overlap tests and updates associated withOBBs and convex hulls. k�dops are bounding volumes that are convex polytopes whosefacets are determined by halfspaces with outward normals coming from a small �xed setof k orientations. In the implementation reported in [40], their use compares favorablywith RAPID, whose hierarchy is based on oriented volume boxes.Though not hierarchical, the most common object partitioning representation is the Con-structive Solid Geometry (CSG) tree and, in [12], a bounding technique tailored to thisrepresentation was proposed. The idea is to represent all objects to be checked for interfer-ence in one such tree and then iteratively compute simple enclosing volumes (the so called19



S-bounds) for each node in the tree. The resulting bound at the root node delimits thepart of the objects susceptible of interfering. The technique starts by placing S-bounds ofthe primitives at the leaves of the CSG tree. Then, S-bounds are alternatively propagatedupwards and downwards according to the set operations attached to every node in thetree. Two examples of S-bounds, namely spheres and rectangular parallelepipeds alignedwith the coordinate axes, are used and discussed in [12]. This technique has the advan-tages of hierarchical representations, as discussed at the beginning of this section, i.e.,the cut-o� of subtrees included in empty bounds, leading to possibly important computa-tional savings, and the focussing of intersection searching on zones where intersection canactually occur. Although originally developed for 3D interference detection, the techniquehas been extended to extrusions [13].4.2.2 Bounding dependent on the direction of motionIf any kind of relative motion between two solids is allowed, every part of their boundariesmay intersect. But if a polyhedron can only move in a speci�c way with respect to theother one, only certain parts of them can actually collide.Back-face culling techniques, which have been widely used in Computer Graphics to speedup the rendering of polyhedra, can also be used in the collision detection context to avoidunnecessary checking of boundary elements for collision, as shown in [84]. The basic ideaconsists of comparing the normal vectors of the faces of the polyhedra with the relativevelocity vectors. A face is culled if its normal has a negative projection on the motionvector, as can be seen in Fig. 12. On the average, half of the faces of the two polyhedraare eliminated in this way.
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Fig. 12. Only the faces (shown as heavy lines) whose normals have positive projections on therelative motion vectors (v2;1 and v1;2) need to be considered.Another possibility for feature bounding arises in the context of convex polyhedra subjectto translational motions. Applicability constraints [28] permit detecting those vertex-faceand edge-edge pairs that can actually come into contact (Fig. 13). The vertex-face appli-cability condition expresses the fact that a vertex can touch a face only if every adjacentedge projects positively on the face's normal (taking the vertex as origin of every edge in-terpreted as a vector). Analogously, the edge-edge applicability condition states that twoedges can touch only if there exists a separating plane between their respective wedges.The applicability constraints may be used as a preprocessing step in a collision detectionscheme based on edge-face intersection tests. For each applicable vertex-face pair, only20
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Fig. 13. (a) An applicable vertex (Vj) - face (Fi) pairing. (b) Edges Ei and Ej are also applicable.one of the edges adjacent to the vertex has to be tested for interference with the face. Anyother edge-face test with this face can be cut o�. In a similar way, edge-edge applicablepairs bound the number of edge-face tests to be performed. In [47], an e�cient algorithmfor bounding edge-face tests using applicability constraints is described. Experimentalresults show that the number of tests required is linear in the total number of edges,the constant of linearity being close to 1. The algorithm is based on a face orientationgraph representation, where face adjacency relations are explicitly depicted. Both thisrepresentation and the bounding algorithm based on it have recently been extended todeal with non-convex polyhedra [48].4.2.3 Exploiting temporal coherence to track closest pointsThe incremental minimum distance realization technique [52] has already been mentionedin Subsection 4.1. At a given instant, the boundary elements that realize the minimumdistance must be close to those realizing it at the previous instant (this is known asgeometric and temporal coherence), which are therefore taken as initial points for thesearch. In this case, it is not a speci�c orientation, but a neighborhood criterion whichis used for saving computational e�ort. Based on this technique, the collision detectionlibrary I COLLIDE has been developed and is publicly available on the web [24]. Alibrary that uni�es I COLLIDE and RAPID in the framework of the VRML speci�cationis described in [44].The fact that the computation of the distance is not actually needed for reporting collision,and that it is not necessary to keep track of the pair of closest points unless a collisionactually occurs, is used in [23] to develop Q COLLIDE, a collision detection library alsoavailable on the web. The separating vector algorithm e�ciently determines whether thereexists a separating plane between two convex polyhedra (see Fig. 14). If so, they do notcollide. Otherwise, the situation at the previous instant is examined: an improved versionof the algorithm of Gilbert et al. [34] is applied in order to determine the pair of closestpoints (where the pair of supporting vertices given by the separating plane is a good initialguess for the closest points). As in I COLLIDE, temporal coherence is exploited, so thatthe separating plane can be determined in expected constant time.The interference test between two hierarchical volume representations having di�erentde�ning reference frames can be very costly as to defeat the purpose of having a hierarchy.21
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computed and the heap updated. Only the objects whose bounding boxes for their sweptvolumes during the time step intersect with other boxes are selected and included in theheap. The intersections between these n boxes can be done in O(n(1 + logR)), R beingthe ratio of largest to smallest box size, as shown in [64].A similar idea is followed in [51,24,67,54] where temporal coherence is exploited not onlyto speed up pairwise intersection detection (as mentioned in Section 4.2.3) but also toperform less of these pairwise tests. If time steps are small enough, there will be littlechange in the positions of the bounding boxes, and, consequently, in the sequence ofintervals that these bounding boxes project onto the coordinate axes. Since bounding boxinterference is here determined by the simultaneous overlap of their projected intervalson the three axes, interval sorting techniques play here a crucial role. One such techniqueexploiting temporal coherence permits assessing interval overlap in expected linear time.Sweep techniques have been extensively used to prune the number of object pairs to bechecked for interference [79]. The idea is to sweep a plane through the scene and testfor interference only those pairs of objects simultaneously intersecting the plane. A newusage of this technique is to use a 2D sweep to bound collision pairs in 3D. In [42],4D hyper-trapezoids are used to bound the object along its motion. If one intersectionbetween two hyper-trapezoids occurs, the corresponding objects are tested for collision.These intersections are computed from intersections between their faces. The problem isreduced, by successive projections, to a 2D segment intersection detection problem. The2D sweep algorithm is described in [5] and runs in O((m+ k) logm) time for m segmentsthat intersect k times. Although for n objects the worst case value of k is O(n2), empiricalevidence shows that the average value of k is much lower (0:07%).5 ConclusionsCollision detection algorithms are of interest especially in the domains of ComputerGraphics and Robotics. As described in Section 2, these algorithms usually rely on staticinterference tests, most of which have been developed in the domain of ComputationalGeometry. In this paper, we have summarized the basic ideas originated in the threedomains mentioned, in relation to the topic of static and dynamic interference detection.The dominating trend in Computational Geometry is that of obtaining algorithms with thebest possible worst-case complexity. In the case of convex polyhedra, optimal algorithmshave been developed for intersection and distance computation, which are linear in thetotal number of vertices. However, most algorithms developed within this domain havenot been implemented and, therefore, their e�ciency in a practical setting is hard toassess. The detailed complexity of the only known subquadratic algorithm for interferencedetection between non-convex polyhedra [66] has very large constant factors, which makesit unfeasible for practical purposes.The situation in Robotics is in some sense opposite to the one just described. The keyaspects in this domain are implementation and e�ciency in practical settings. In manycases, the worst-case complexity of the developed algorithms either remains unknown or23



is far from optimal. Comparing algorithms in terms of CPU time is becoming a generalpractice. Several algorithms for interference detection between convex polyhedra havebeen shown to have a computational cost approximately linear in the total number ofvertices. Usually, non-convex polyhedra are dealt with by decomposing them into convexpieces.In Computer Graphics, the emphasis is placed on the possibility of detecting collisions inreal-time, especially in computer animation applications, even if speed is gained at thecost of losing precision. This is the reason why hierarchical representations are often usedin this domain, since they provide higher precision as one moves down the hierarchy, thusallowing to adapt output precision to the computing time available.As for e�ciency, a far more challenging application �eld has appeared recently: hapticinterfaces require update rates of about one kHz, as compared with the 20-30 updatesper second needed in \real-time" graphical applications. Algorithms developed so far [36]solve the problem of a probe point colliding with virtual objects, but this is clearly notsu�cient as the feeling of one 3D object moving in contact with another object is to bedisplayed in a realistic manner.As we have seen, most collision detection schemes only deal with polyhedral approxima-tions. Nevertheless, there are some applications where this kind of approximation is notpossible. The task of verifying whether a given tool, in numerically controlled machin-ing, penetrates beyond a speci�ed threshold the surface of a part to be machined is agood example. This is a challenging problem for collision detection not only due to thenature of the tool motion but also because, in this case, a polyhedral approximation isinadequate. When manufacturing plastic parts using moulds, the di�erent elements of themould have to separated to free the manufactured part. This motion has to be plannedand coordinated to avoid collisions between the mould elements and the part itself. This isanother application where collision detection between smooth surfaces would be of inter-est. Although some research has been performed on robust and interactive computation ofclosest features, much remains to be done in the direction of determining contact pointsand penetration distances between models with smooth surfaces (see [80] for some re-sults). As a further step, accurate and e�cient detection of contacts between deformablemodels is also a research area that will certainly deserve attention in the near future.
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