Elementary Differential

Geometry
cs164

Outline

- Curvature formula for 2d curves
- Applications
- Curvature of space curves and surfaces
- Digital geometry processing

Arbitrary Parameterization

- Given a 2d parametric curve $\mathbf{c}(\mathrm{t})=(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))^{\prime}$, its signed curvature is given by

$$
k(t)=\frac{x^{\prime \prime}(t) y^{\prime}(t)-x^{\prime}(t) y^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{\frac{3}{2}}}
$$

Example1

- The curvature of 2 d circle with radius r is

$$
k=\frac{1}{r}
$$

Example 2

- The curvature of a parabola $y=1 / 2 k x^{2}+c$ is given by

Implicit Curve-Exercise

$\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{c}$

Object Retrieval

- Compare curvature distributions

Symmetry Detection

Curvature of space curves

- Space curve does not lie on a plane.
- What is the difference between a spring and a circle

Curvature and Torsion

$$
k(t)=\frac{r^{\prime}(t) \times r^{\prime \prime}(t)}{\left\|r^{\prime}(t)\right\|^{3}} \quad \tau(t)=\frac{\operatorname{det}\left(r^{\prime}(t), r^{\prime \prime}(t), r^{\prime \prime \prime}(t)\right)}{\left\|r^{\prime}(t) \times r^{\prime \prime}(t)\right\|^{2}}
$$

- Property: A plane curve with non-vanishing curvature has zero torsion at all points. Conversely, if the torsion of a regular curve is identically zero then this curve belongs to a fixed plane.

Curvature of surfaces

- Two principal curvatures and two principal directions.
- Mean curvature
- Gaussian curvature

Example

- The principal curvatures of a parabola $\mathrm{z}=$ $1 / 2 \mathrm{ax}^{2}+1 / 2 b y^{2}$ are a and b.
- The principal directions are x and y axis.

Digital Geometry Processing

- Principal directions

More

Design

