CS164: Voronoi/Delaunay Diagrams, Distance Functions

Leonidas Guibas Computer Science Dept. Stanford University

1

Distance Functions

Object Matching Queries

- assume you have database \mathcal{D} of objects.
- assume \mathcal{D} is composed by several objects, and that each of these objects belongs to one of n classes C_1, \ldots, C_n .
- imagine you are given a new object *o*, not in your database, and you are asked to determine whether *o* belongs to one of the classes. If yes, you also need to point to the class.
- One simple procedure is to say that you will assign object *o* the class of the *closest* object in \mathcal{D} :

class(o) = class(z)

where $z \in \mathcal{D}$ minimizes $\mathbf{dist}(o, z)$

• in order to do this, one first needs to define a notion **dist** of *distance* or *dis-similarity between objects*.

Useful for Object/Shape Classification

More Shape Similarity Methods

- Hausdorff distance
- Fréchet distance
- Morphing metrics

Proteins are defined as having a common fold if they have the same major secondary structures in the same arrangement and with the same topological connections

(SCOP)

Hausdorff Distance

Many-to-many correspondences can be simpler ...

Hausdorff Definition

We are two point sets $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$ in E^2 . The one-sided Hausdorff distance from A to B is defined as:

$$\tilde{\delta}_H(A,B) = \max_{a \in A} \min_{b \in B} ||a - b||$$

The (bidirectional) Hausdorff distance between A and B is then defined as:

$$\delta_H(A,B) = \max\left(\tilde{\delta}_H(A,B), \tilde{\delta}_H(B,A)\right)$$

For fixed A and B, it can easily be computed in time $O((n+m) \log(n+m))$

Hausdorff Variations

- Order statistics use percentile max (say the 90% largest distance from A to B) to avoid undue impact of outliers (fractional Hausdorff)
- Typically, one of the sets (say B) may be moved by a transformation group G

 $\tilde{\delta}_{H,\mathcal{G}}(A,B) = \min_{T \in \mathcal{G}} \max_{a \in A} \min_{b \in B} ||a - T(b)||$

Both "vector" and "raster" methods can be used

Computing Hausdorff

In the plane, vector form, under translation ...

The Voronoi surface of A, a piecewise conical surface

Translate B by t

$$\delta_b(t) = \min_{a \in A} \|a - (b+t)\| = \min_{a \in A} \|(a-b) - t\| = d_{-b}(t)$$

Computing Hausdorff, II $f(t) = \tilde{\delta}_H(B + t, A) = \max_{b \in B} \delta_b(t)$

Upper envelope of *m* Voronoi surfaces $A-b_1$, $A-b_2$, ..., $A-b_m$

Can be done in time O(nm(n+m) polylog(n+m))

The amount of computation gets out of hand when we allow rotations and go to 3-D.

Raster Hausdorff

Distance transforms computed on a grid

(fast marching, level sets, ...)

A 1-d example

Fast Hausdorff Search

- Branch and bound hierarchical search of transformation space
- Consider 2-D transformation space of translation in x and y
 - (Fractional) Hausdorff distance cannot change faster than linearly with translation
 - Similar constraints for other transformations
 - "Quad-tree" decomposition, compute distance for transform at center of each cell
 - If larger than cell half-width, rule out cell
 - Otherwise subdivide cell and consider children

Fast Hausdorff Search, II

- Guaranteed (or admissible) search heuristic
 - Bound on how good answer could be in unexplored region
 - Cannot miss an answer
 - In worst case won't rule anything out.
 - In practice rule out vast majority of transformations
- In practice rule out vast majority of transformations
 - Can use even simpler tests than computing distance at each cell center

Reference Points

We match shapes by aligning certain well-chosen reference points. Such schemes can give constant-factor approximations to the Hausdorff distance [Alt *et. al.*, 91].

Example: approximate Hausdorff in 2-D under translations by matching lower left corner of bounding box

Gromov-Hausdoff Distance

$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^Z(f(X),g(Y))$

Gromov-Hausdorff Alternate Form

For compact spaces (X, d_X) and (Y, d_Y) let

$$d_{\mathcal{GH}}^{(2)}(X,Y) = \frac{1}{2} \inf_{R} \max_{(x,y),(x',y')\in R} |d_X(x,x') - d_Y(y,y')|$$

We write, compactly,

$$d_{\mathcal{GH}}^{(2)}(X,Y) = \frac{1}{2} \inf_{R} \|d_X - d_Y\|_{L^{\infty}(R \times R)}$$

Hard to compute ...

 $\delta_F(f,g) = \inf_{\alpha,\beta} \max_{t \in [0,1]} ||f(\alpha(t)) - g(\beta(t))||$

From a decision problem to an optimization problem.

Guess and verify ...

O(mn log(mn))

Morphing Distance

The Earth Mover's Distance

A transportation metric via linear programming [Rubner, Tomasi, G., 98]

 $\min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} f_{ij}$

 $\begin{array}{rcl} f_{ij} & \geq & 0 & \quad i \in \mathcal{I}, \ j \in \mathcal{J} \\ \sum\limits_{i \in \mathcal{I}} f_{ij} & = & y_j & \quad j \in \mathcal{J} \\ \sum\limits_{j \in \mathcal{J}} f_{ij} & \leq & x_i & \quad i \in \mathcal{I} \end{array}, \end{array}$

 $\mathsf{EMD}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} f_{ij}}{\sum_{j \in \mathcal{J}} y_j}$

Also Wesserstein distance, Kantorovich-Rubinstein distance ...

 \mathbf{X}