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Why Topology?
Topology is the study of 
connectivity
It investigates properties 
of shapes and spaces 
that are less sensitive to 
exact metric information
As a consequence, it 
produces shape and 
space invariants that are 
robust to many kinds of 
deformation and noise
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Computational Representations 
of Topology

We need to find discrete 
representations of infinite, 
continuous topological 
spaces
We need to develop 
efficient algorithms for the 
manipulation of such 
representations, as well 
as for extracting 
topological information 
from them
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Simplicial Complexes



Simplices
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Faces
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Simplicial Complex
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A Triangle Mesh is a
Simplicial Complex
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Abstract Simplicial Complex
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Relationship
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An Example
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Subcomplex
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Star
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Link
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Triangulations
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We typically study shapes and spaces via triangulations of them



Orientability I
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Orientability II

17



Invariants
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Invariants provide partial information about a space



Euler Characteristic
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Basic 2-Manifolds
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Euler and Connected Sums
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Compact 2-Manifolds
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Euler characteristic and orientability are two invariants 
providing a full classification of compact 2-manifolds

add handles

add cross‐caps
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Homology



Homology
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Why Homology?
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Chain Group
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Boundary Operator
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Boundary Theorem
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Chain Complex
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Cycle Group
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Boundary Group
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Nesting Property
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Cycle Equivalence
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Simplicial Homology
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Z2 Homology
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Homology of 2-Manifolds
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Again, homology is independent of the triangulation



Euler Revisited
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Euler-Poincaré
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Point Clouds and the Complex Zoo



What Does This All Mean for
Point Clouds or Meshes?
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Topology of Points
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A Hidden Space X
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Open Cover
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Formally
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The Nerve of the Cover
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An abstract simplicial complex



Formally
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The Nerve Lemma
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intersections



The Čech Complex

49
Ball radius is a parameter ε



Formally
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Vietoris-Rips Complex
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Distance is a parameter ε



Formally
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Geometric Complexes: Voronoi
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Use Voronoi cells as open cover



Dual Complex: Delaunay
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Delaunay = Nerve of Voronoi



Restricted Voronoi
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Ball radius is a parameter ε



Alpha Complex
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Ball radius is a parameter ε



Subcomplex of Delaunay
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Formally
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Persistent Homology



Detecting a Torus

PCD
60



Question of Scale: A Filtration

β0 = 150
β1 = 0
β2 = 0

β0 = 1
β1 = 37
β2 = 0

β0 = 1
β1 = 2
β2 = 1

β0 = 1
β1 = 1
β2 = 22

Čech Filtration

ε
β1
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i

Inductive Systems on 
Complexes

⊆ ⊆⊆

Hk(K25) Hk(K1452)Hk(K994)Hk(K50)

K250 K500 K994 K1452

Functoriality

Idea:  Follow basis elements from birth to death
while maintaining compatible bases
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Consistent Bases Exist
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Persistent Homology

Homology:   Hk(Kl) = Zk(Kl) / Bk(K
l)

The p-persistent k-th Homology group

Persistence Barcode:  multiset of 
intervals

Birth Death

Hk
l, p = Zk

l / (Bk
l+p∩Zk

l )

[Zomorodian. Edelsbrunner, Letcher 2002]

Persistent topological features are part of the
shape; transient ones may be noise.
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Deconstructing the Graph

PCD

Torus!

β1 Barcode

β1 Graph
ε

β1

Persistence barcode for
the torus
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3D Structure Discovery:
Gramicidin A
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Making Topology a Finer Tool

Topology:  connectivity of a space

Key Idea:  no reason to look at the original space only

Add geometry ⇒ look at derived space(s)
Compute topology of derived space(s)

1. Find filtration
2. Compute persistence

Geometry
discriminating

Topology
classifying

Our recipe

via the tangent complex
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2-D Curve Tangent Complex

T(X) has two
components:  
β0(T(X)) = 2

ζ2

x

ζ1 Every point x on a 
smooth curve X has 
two tangent 
directions.

(x, ζ2)

(x, ζ1) There are two points 
in its fiber π-1(x)

π

A corner point has four 
tangent directions:  
β0(T(X)) = 4

68



3-D Curvature-Filtered Tangent 
Complex

Derived space
T0(X):  space of (point, tangent)
Tangent complex T(X):  closure of T0(X)

Filtration by increasing curvature
Let ρ(x, ζ) be the radius of the circle of second order 
contact
Tδ

0(X):  points of T0(X) with 1/ρ ≤ δ.
Tδ(X):  closure of Tδ

0(X)

Filtered tangent complex Tfilt(X) is the family

{Tδ(X)}δ ≥ 0

x
0

0x

X

ζ
T(X)
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Persistence Barcodes: Circle 
vs.  Ellipse

�
�

0 1
R ∞

�
�

0 1
R ∞β0

β1

T filt(circle of radius R) is simple: 
the entire complex (2 copies of circle) 
appears at once, at  = 1/R.

T filt(ellipse) evolves through four
stages:  points at lower curvature 
appear earlier.
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Applying Barcodes to 2D PCDs

Input:  Shape Output: Descriptor
Point Cloud Data Barcode

Metric Space
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Fibers

PCD P ⊂ X, sampled from smooth closed 1-manifold
We compute tangent fibers π-1(P) by normal estimation 
at each point
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Filtering by Curvature

Construct tangent complex incrementally
Transform points to coordinate frame provided by 
tangent computation
Fit osculating parabola to estimate curvature (more 
robust integral methods possible) 

73




Approximating T(X)

Rn × Sn-1 with ds2 = dx2 + ω2 dζ2

T(X) ≈ ∪p ∈ π-1(P) Bε(p)



Family of Ellipses
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Articulated Arm Parametrization
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Summary
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