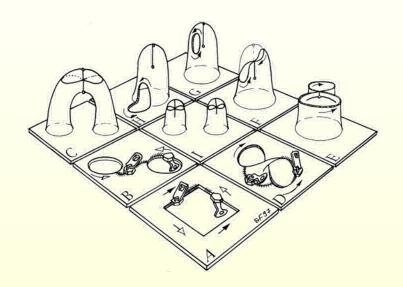
CS164: Simplicial Complexes, Homology, Persistence

Leonidas Guibas Computer Science Dept. Stanford University

[Most slides: Afra Zomorodian]

Why Topology?

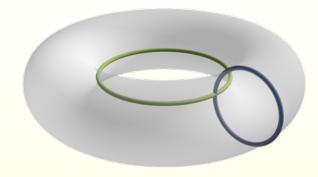
- Topology is the study of connectivity
- It investigates properties of shapes and spaces that are less sensitive to exact metric information
- As a consequence, it produces shape and space invariants that are robust to many kinds of deformation and noise

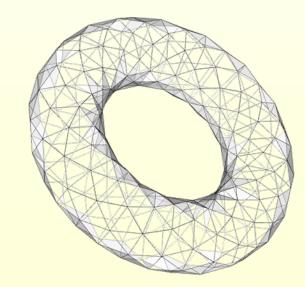


cross-handle = 2 cross-caps

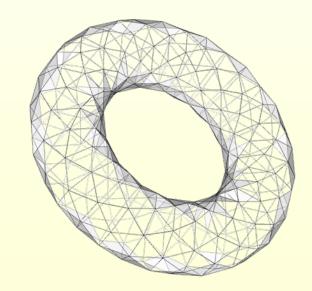
Computational Representations of Topology

- We need to find discrete representations of infinite, continuous topological spaces
- We need to develop efficient algorithms for the manipulation of such representations, as well as for extracting topological information from them



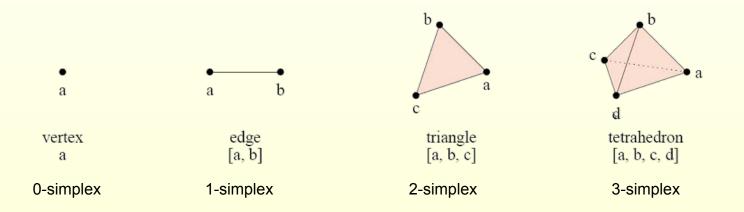


Simplicial Complexes



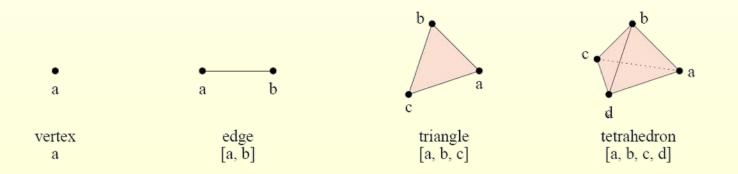
Simplices

- A k-simplex is the convex hull of k + 1 affinely independent points $S = \{v_0, v_1, \dots, v_k\}$. The points in S are the vertices of the simplex.
- A k-simplex is a k-dimensional subspace of \mathbb{R}^d , dim $\sigma = k$.



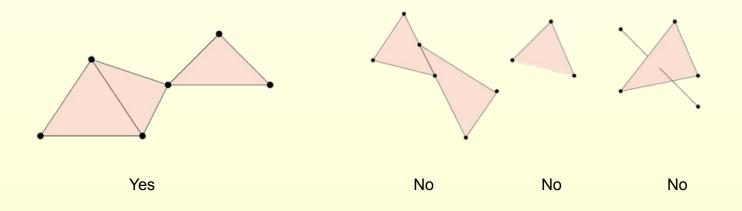
Faces

- σ : a k-simplex defined by $S = \{v_0, v_1, \dots, v_k\}.$
- + τ defined by $T\subseteq S$ is a face of σ
- σ is its coface.
- $\sigma \geq \tau$ and $\tau \leq \sigma$.
- $\sigma \leq \sigma$ and $\sigma \geq \sigma$.

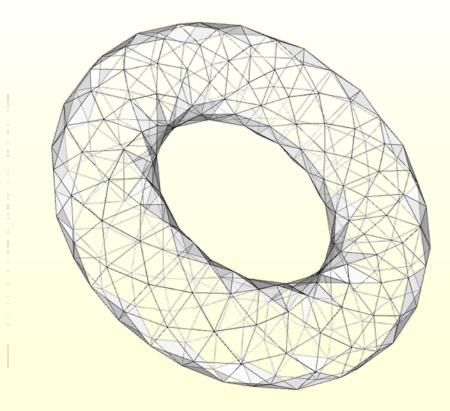


Simplicial Complex

- A simplicial complex K is a finite set of simplices such that
 1. σ ∈ K, τ ≤ σ ⇒ τ ∈ K,
 2. σ, σ' ∈ K ⇒ σ ∩ σ' ≤ σ, σ' or σ ∩ σ' = Ø.
- The dimension of K is dim $K = \max{\dim \sigma \mid \sigma \in K}$.
- The vertices of K are the zero-simplices in K.
- A simplex is principal if it has no proper coface in K.



A Triangle Mesh is a Simplicial Complex



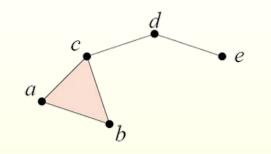
Abstract Simplicial Complex

- An abstract simplicial complex is a set K, together with a collection S of subsets of K called (abstract) simplices such that:
 - 1. For all $v \in K$, $\{v\} \in S$. We call the sets $\{v\}$ the vertices of K.
 - 2. If $\tau \subseteq \sigma \in \mathbb{S}$, then $\tau \in \mathbb{S}$.
- We call *S* the complex.

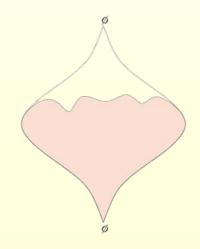
Relationship

- Let K be a simplicial complex with vertices V and let S be the collection of all subsets {v₀, v₁,..., v_k} of V such that the vertices v₀, v₁,..., v_k span a simplex of K. Then, S is the vertex scheme of K.
- K and S form an abstract simplicial complex.
- Two abstract simplicial complexes are isomorphic if we can one from the other by renaming vertices.
- (Theorem) Every abstract complex S is isomorphic to the vertex scheme of some simplicial complex K.
- We call K a geometric realization of S.

An Example

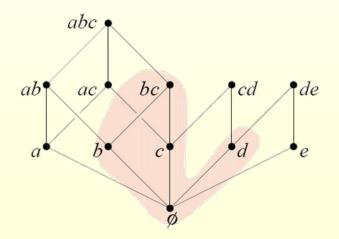






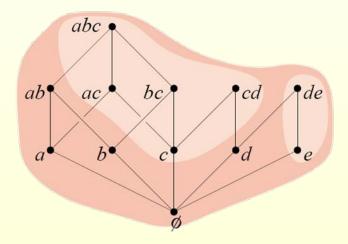
Subcomplex

- A subcomplex is a simplicial complex L ⊆ K. The smallest subcomplex containing a subset L ⊆ K is its closure, Cl L = {τ ∈ K | τ ≤ σ ∈ L}.
- Everything "below" is included.



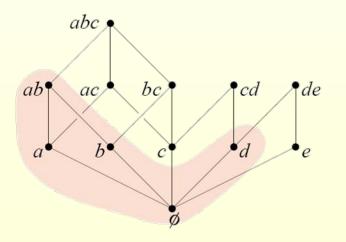
Star

- The star of *L* contains all of the cofaces of *L*, St $L = \{ \sigma \in K \mid \sigma \geq \tau \in L \}.$
- Everything "above" is included.
- Stars are analogs of neighborhoods (open).



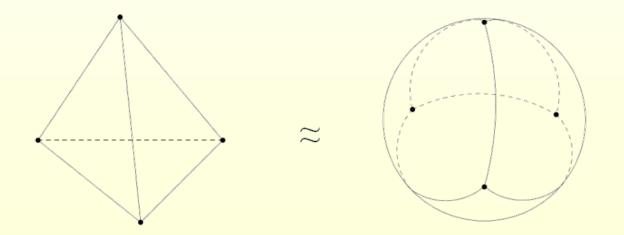
Link

• The link of L is the boundary of its star, $Lk L = Cl St L - St (Cl L - \{\emptyset\}).$



Triangulations

- The underlying space |K| of a simplicial complex K is $|K| = \bigcup_{\sigma \in K} \sigma$.
- |K| is a topological space.
- A triangulation of a topological space X is a simplicial complex K such that |K| ≈ X.



We typically study shapes and spaces via triangulations of them

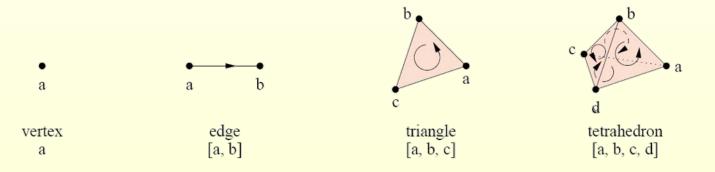
Orientability I

• An orientation of a k-simplex $\sigma \in K$, $\sigma = \{v_0, v_1, \dots, v_k\}, v_i \in K$ is an equivalence class of orderings of the vertices of σ , where

$$(v_0, v_1, \dots, v_k) \sim (v_{\tau(0)}, v_{\tau(1)}, \dots, v_{\tau(k)})$$

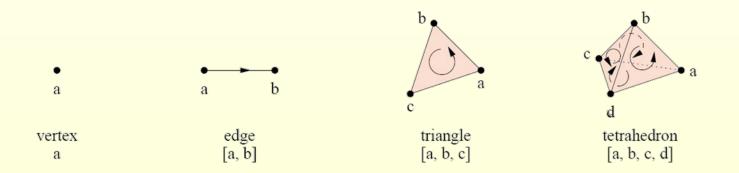
are equivalent orderings if the parity of the permutation τ is even.

 We denote an oriented simplex, a simplex with an equivalence class of orderings, by [σ].



Orientability II

- Two k-simplices sharing a (k 1)-face σ are consistently oriented if they induce different orientations on σ.
- A triangulable *d*-manifold is orientable if all *d*-simplices can be oriented consistently.
- Otherwise, the *d*-manifold is non-orientable



Invariants

• A (topological) invariant is a map *f* that assigns the same object to spaces of the same topological type.

•
$$\mathbb{X} \approx \mathbb{Y} \implies f(\mathbb{X}) = f(\mathbb{Y})$$

- $f(\mathbb{X}) \neq f(\mathbb{Y}) \implies \mathbb{X} \not\approx \mathbb{Y}$ (contrapositive)
- $\bullet \ f(\mathbb{X}) = f(\mathbb{Y}) \implies \text{nothing}$
- "coarser" differentiation

Invariants provide partial information about a space

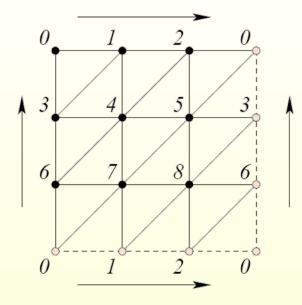
Euler Characteristic

- K a simplicial complex with s_k k-simplices.
- The Euler characteristic $\chi(K)$ is

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i s_i = \sum_{\sigma \in K - \{\emptyset\}} (-1)^{\dim \sigma}$$

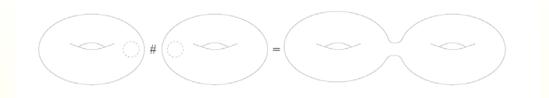
- v e + f = 1 (Graph Theory)
- Invariant for |K|
- Any triangulation gives the same answer!
- Intrinsic property

Basic 2-Manifolds

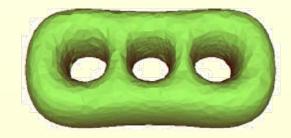


2-Manifold	χ
Sphere \mathbb{S}^2	2
Torus \mathbb{T}^2	0
Klein bottle \mathbb{K}^2	0
Projective plane $\mathbb{R}P^2$	1

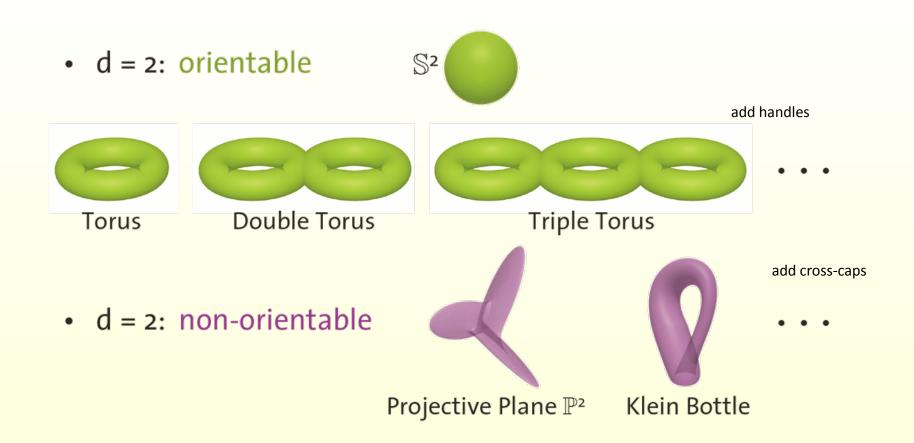
Euler and Connected Sums



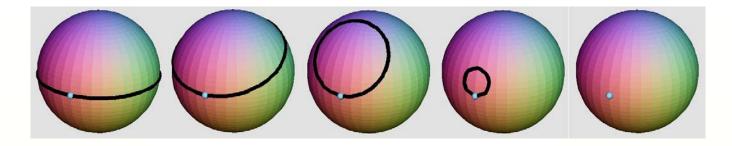
- (Theorem) For compact surfaces $\mathbb{M}_1, \mathbb{M}_2$, $\chi(\mathbb{M}_1 \# \mathbb{M}_2) = \chi(\mathbb{M}_1) + \chi(\mathbb{M}_2) - 2.$
- $\chi(g\mathbb{T}^2) = 2 2g$
- $\chi(g\mathbb{R}\mathbf{P}^2) = 2 g$
- The connected sum of g tori is called a surface with genus g.

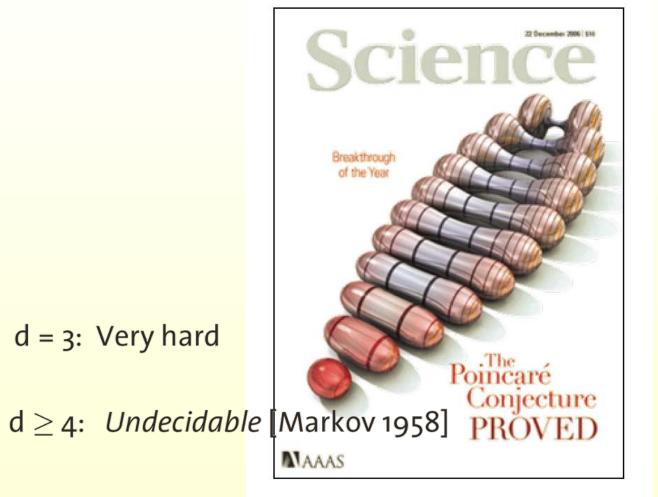


Compact 2-Manifolds

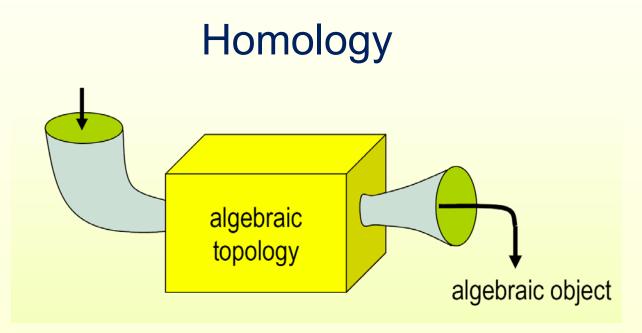


Euler characteristic and orientability are two invariants providing a full classification of compact 2-manifolds

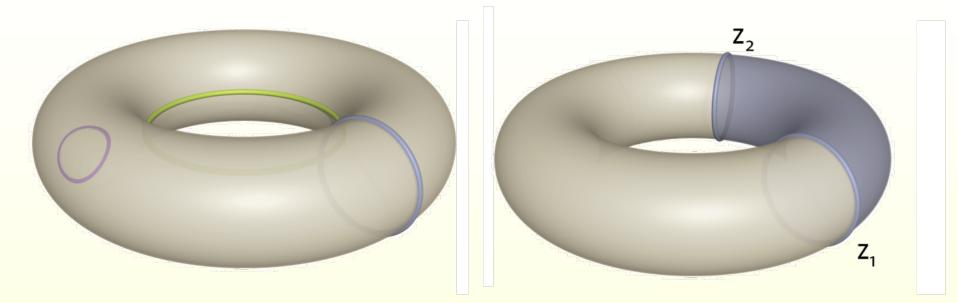


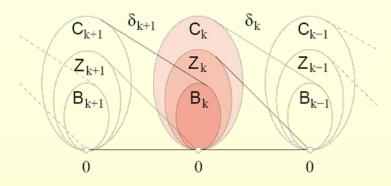


[Grigori Perelman, 2003]



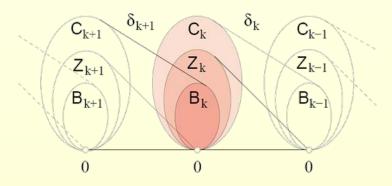
Homology





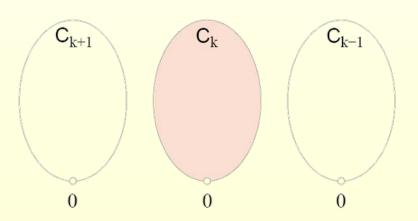
Why Homology?

- Algebraization of first layer of geometry in structures
- How cells of dimension n attach to cells of dimension n-1
- · Less transparent, more machinery
- Combinatorial
- Finite description
- Computable



Chain Group

- Simplicial complex ${\cal K}$
- *k*-chain: $c = \sum_{i} n_i[\sigma_i], n_i \in \mathbb{Z}, \sigma_i \in K$ (like a path)
- $[\sigma] = -[\tau]$ if $\sigma = \tau$ and σ and τ have different orientations.
- The kth chain group Ck of K is the free abelian group on its set of oriented k-simplices
- rank $C_k = ?$



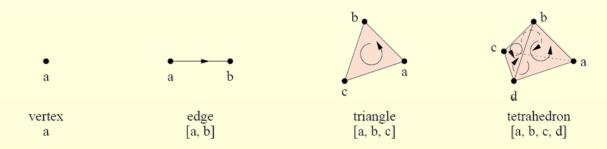
Boundary Operator

The boundary operator ∂_k : C_k → C_{k-1} is a homomorphism defined linearly on a chain c by its action on any simplex
 σ = [v₀, v₁,..., v_k] ∈ c,

$$\partial_k \sigma = \sum_i (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_k],$$

where \hat{v}_i indicates that v_i is deleted from the sequence.

- $\partial_1[a,b] = b a.$
- $\partial_2[a,b,c] = [b,c] [a,c] + [a,b] = [b,c] + [c,a] + [a,b].$
- $\partial_3[a, b, c, d] = [b, c, d] [a, c, d] + [a, b, d] [a, b, c].$
- $\partial_1 \partial_2[a, b, c] = [c] [b] [c] + [a] + [b] [a] = 0.$



Boundary Theorem

- (Theorem) $\partial_{k-1}\partial_k = 0$, for all k.
- Proof:

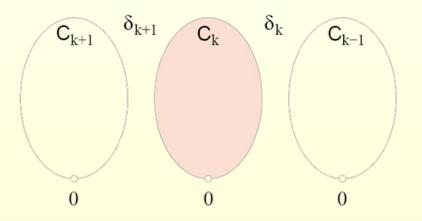
$$\begin{aligned} \partial_{k-1}\partial_k [v_0, v_1, \dots, v_k] &= \\ &= \partial_{k-1} \sum_i (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_k] \\ &= \sum_{j < i} (-1)^i (-1)^j [v_0, \dots, \hat{v_j}, \dots, \hat{v_i}, \dots, v_k] \\ &+ \sum_{j > i} (-1)^i (-1)^{j-1} [v_0, \dots, \hat{v_i}, \dots, \hat{v_j}, \dots, v_k] \\ &= 0, \end{aligned}$$

as switching i and j in the second sum negates the first sum.

Chain Complex

The boundary operator connects the chain groups into a chain complex C_{*}:

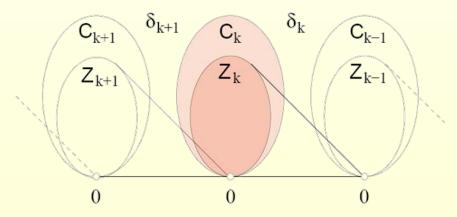
$$\ldots \rightarrow \mathsf{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{C}_k \xrightarrow{\partial_k} \mathsf{C}_{k-1} \rightarrow \ldots$$



Cycle Group

- Let c be a k-chain
- If it has no boundary, it is a *k*-cycle (zycle?)
- $\partial_k c = \emptyset$, so $c \in \ker \partial_k$
- The *k*th cycle group is

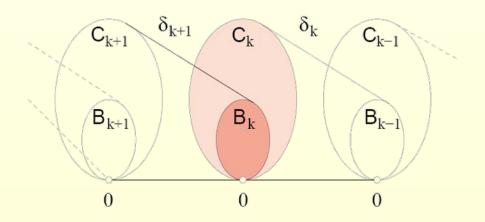
$$\mathsf{Z}_k = \ker \partial_k = \{ c \in \mathsf{C}_k \mid \partial_k c = \emptyset \}.$$



Boundary Group

- Let b be a k-chain
- If b is a boundary of something, it is a k-boundary.
- The *k*th boundary group is

$$\mathsf{B}_k = \operatorname{im} \partial_{k+1} = \{ c \in \mathsf{C}_k \mid \exists d \in \mathsf{C}_{k+1} : c = \partial_{k+1} d \}.$$



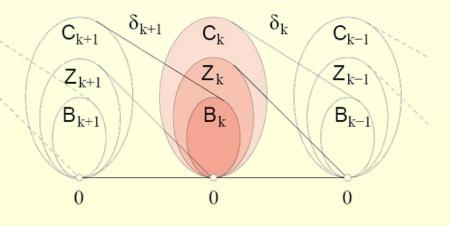
Nesting Property

- Let b be a k-boundary.
- Then, $\exists c \in C_{k+1}$, such that $b = \partial_{k+1}c$.
- What is the boundary of *b*?

$$\partial_k b = \partial_k \partial_{k+1} c = \emptyset,$$

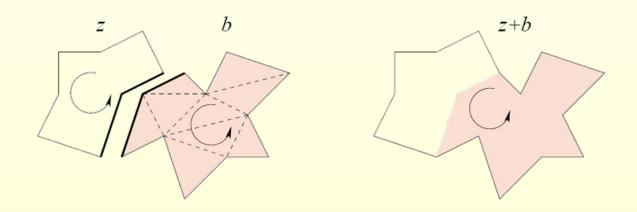
by the boundary theorem.

- That is, every boundary is a cycle!
- $\mathsf{B}_k \subseteq \mathsf{Z}_k \subseteq \mathsf{C}_k$



Cycle Equivalence

- z is a k-cycle
- b is a k-boundary
- We would like to have z + b be equivalent to z
- That is, if $z_1 z_2 = b$ where b is a boundary, then $z_1 \sim z_2$
- Any boundary would do!

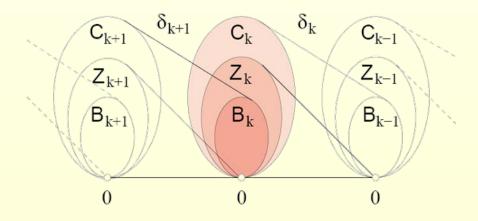


Simplicial Homology

• The *k*th homology group is

$$\mathsf{H}_k = \mathsf{Z}_k / \mathsf{B}_k = \ker \partial_k / \operatorname{im} \partial_{k+1}.$$

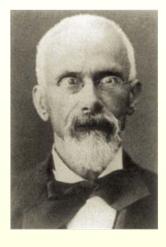
- If $z_1 = z_2 + B_k, z_1, z_2 \in Z_k$, we say z_1 and z_2 are homologous
- $z_1 \sim z_2$.

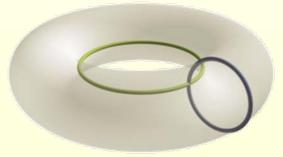


Z₂ Homology

- H_k is a vector space
- kth Betti number β_k = rank H_k = rank Z_k - rank B_k

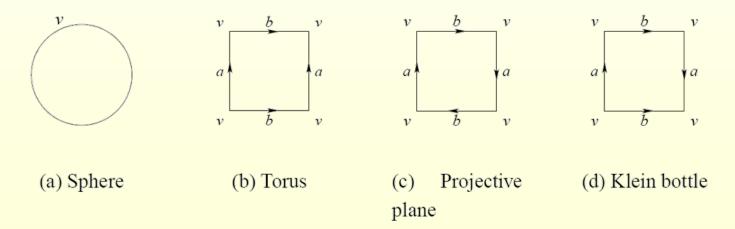
- Geometric interpretation in R³
 - β_o is number of components
 - β_1 is rank of a basis for tunnels
 - β_2 is number of voids





Homology of 2-Manifolds

2-manifold	H ₀	H_1	H_2
sphere	\mathbb{Z}	{0}	\mathbb{Z}
torus	\mathbb{Z}	$\mathbb{Z} imes \mathbb{Z}$	\mathbb{Z}
projective plane	\mathbb{Z}	\mathbb{Z}_2	$\{0\}$
Klein bottle	\mathbb{Z}	$\mathbb{Z} imes \mathbb{Z}_2$	$\{0\}$



Again, homology is independent of the triangulation

Euler Revisited

• Let K be a simplicial complex and $s_i = |\{\sigma \in K \mid \dim \sigma = i\}|$. The Euler characteristic $\chi(K)$ is

$$\chi(K) = \sum_{i=0}^{\dim K} (-1)^i s_i = \sum_{\sigma \in K - \{\emptyset\}} (-1)^{\dim \sigma}$$

- We have new language!
- Let C_{*} be the chain complex on K
- rank(\mathbf{C}_i) = $|\{\sigma \in K \mid \dim \sigma = i\}|$
- $\chi(K) = \chi(\mathbf{C}_*) = \sum_i (-1)^i \operatorname{rank}(\mathbf{C}_i).$

Euler-Poincaré

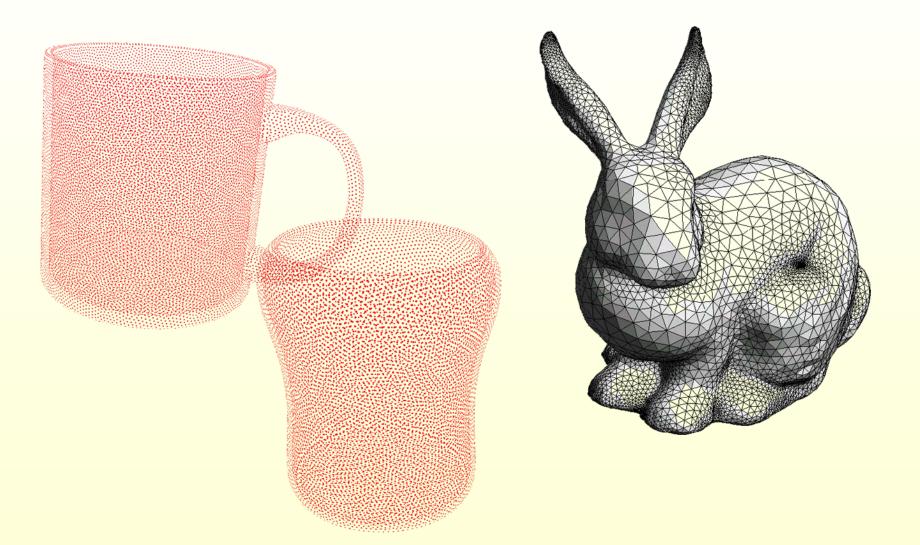
- Homology functors H_{\ast}
- $H_*(C_*)$ is a chain complex:

$$\ldots \to \mathsf{H}_{k+1} \xrightarrow{\partial_{k+1}} \mathsf{H}_k \xrightarrow{\partial_k} \mathsf{H}_{k-1} \to \ldots$$

- What is its Euler characteristic?
- (Theorem) $\chi(K) = \chi(\mathbf{C}_*) = \chi(\mathbf{H}_*(\mathbf{C}_*)).$
- $\sum_{i} (-1)^{i} s_{i} = \sum_{i} (-1)^{i} \operatorname{rank}(\mathsf{H}_{i}) = \sum_{i} (-1)^{i} \beta_{i}$
- Sphere: 2 = 1 0 + 1
- Torus: 0 = 1 2 + 1

Point Clouds and the Complex Zoo

What Does This All Mean for Point Clouds or Meshes?

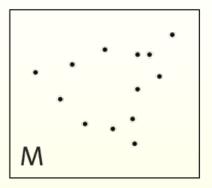


Topology of Points

A Hidden Space X

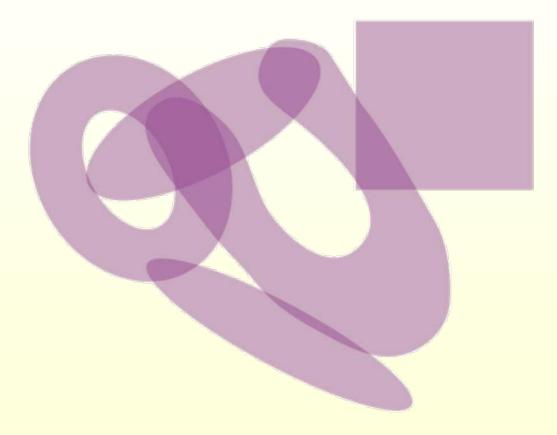
- Topological space \mathbb{X}
- Underlying space





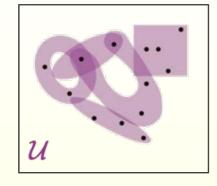
- Question: How can we recover the topology of X from M?
- Problem: M has no interesting topology.

Open Cover

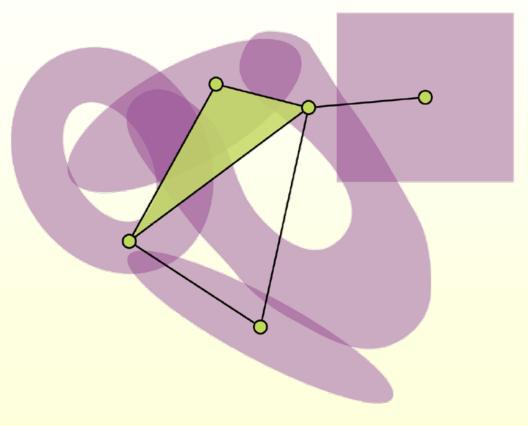


Formally

- Cover $\mathcal{U} = \{U_i\}_{i \in I}$
 - U_i, open
 - $M \subseteq U_{i \in I} U_{i}$
- Idea: The cover approximates the underlying space X
- Question': What is the topology of \mathcal{U} ?
- Problem: $\ensuremath{\mathcal{U}}$ is an infinite point set



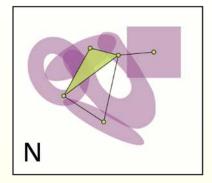
The Nerve of the Cover



An abstract simplicial complex

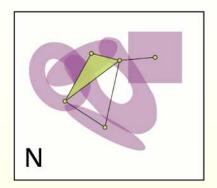
Formally

- X: topological space
- $\mathcal{U} = U_{i \in I} U_i$: open cover of \mathbb{X}
- The nerve N of ${\mathcal U}$ is
 - $\quad \emptyset \in \mathsf{N}$
 - $\ If \cap_{j \, \in \, j} U_j \, \neq \, \emptyset \text{ for } J \subseteq I \text{, then } J \in N$
- Dual structure
- (Abstract) Simplicial complex



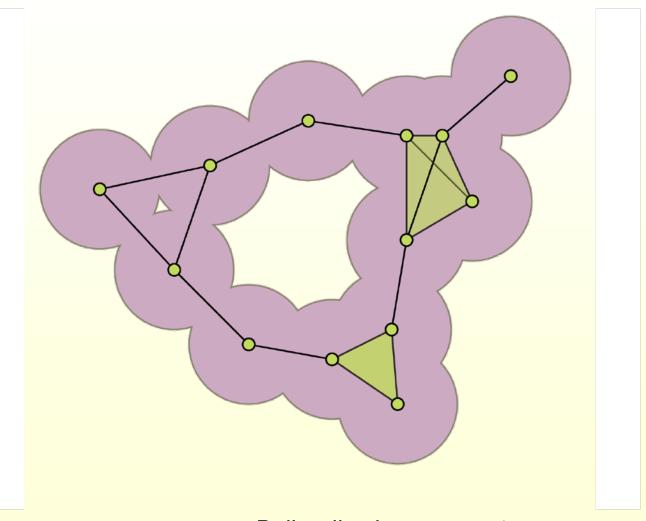
The Nerve Lemma

 (Lemma [Leray]) If sets in the cover are contractible, and their finite unions are contractible, then N ≃ U. intersections



- The cover should not introduce or eliminate topological structure
- Idea: Use "nice" sets for covering
 - contractible
 - convex
- Dual (abstract) simplicial complex will be our representation

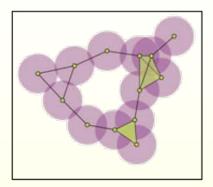
The Čech Complex



Ball radius is a parameter $\boldsymbol{\epsilon}$

Formally

- Set: Ball of radius ε B_ε(x) = { y | d(x, y) < ε}
- Cover: B_ε at every point in M

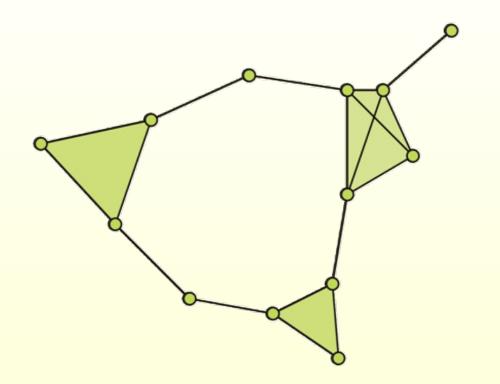


• Cech complex is nerve of the union of ε-balls

$$C_{\epsilon}(M) = \left\{ \operatorname{conv} T \mid T \subseteq M, \bigcup_{m \in T} B_{\epsilon}(m) \neq \emptyset \right\}$$

- Cover satisfies Nerve Lemma
- Eduard Cech (1893 1960)

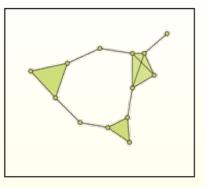
Vietoris-Rips Complex



Distance is a parameter ϵ

Formally

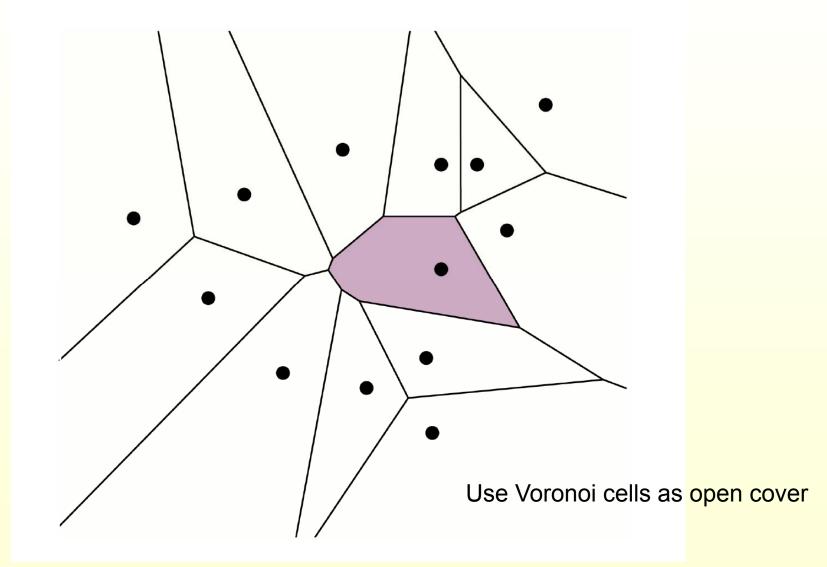
- 1. Construct ε-graph
- 2. Expand by add a simplex whenever all its faces are in the complex
- Note: We expand by dimension



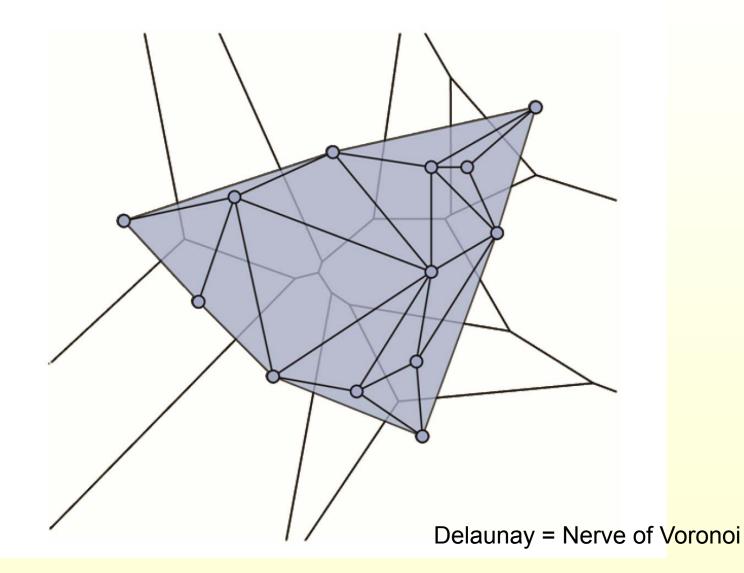
 $V_{\epsilon}(M) = \{\operatorname{conv} T \mid T \subseteq M, \operatorname{d}(x, y) < \epsilon, \forall x, y \in T\}$

- $V_{2\epsilon}(M) \supseteq C_{\epsilon}(M)$
- Not homotopic to union of balls
- Leopold Vietoris (1891 2002)
- Eliyahu Rips (1948 –)

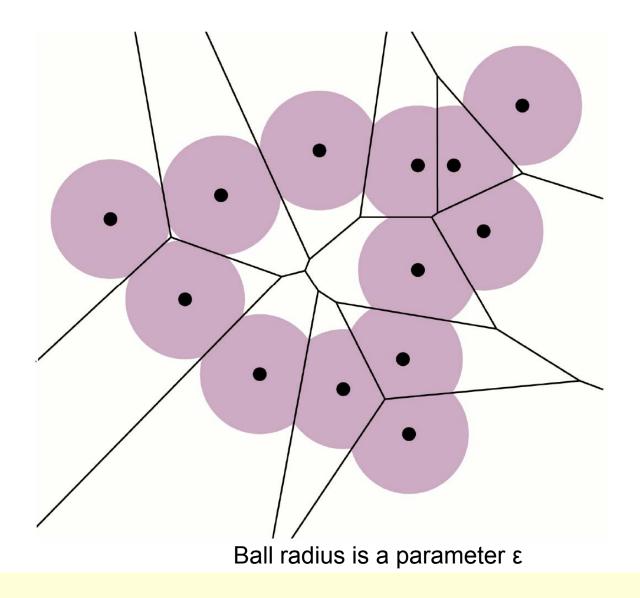
Geometric Complexes: Voronoi



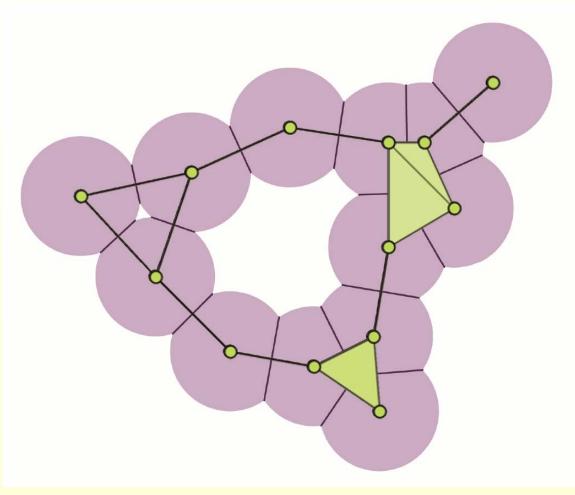
Dual Complex: Delaunay



Restricted Voronoi

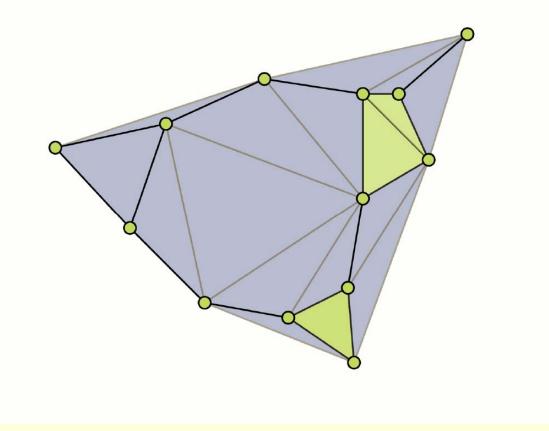


Alpha Complex



Ball radius is a parameter $\boldsymbol{\epsilon}$

Subcomplex of Delaunay

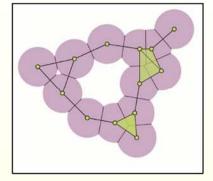


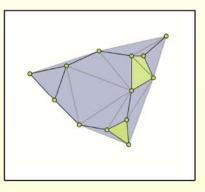
Formally

- Alpha cell: $A_{\epsilon}(p) = B_{\epsilon}(p) \cap V(p)$
- Alpha shape: union of alpha cells
- Alpha complex: nerve of alpha shape

$$A_{\epsilon}(M) = \left\{ \operatorname{conv} T \mid T \subseteq M, \bigcap_{p \in T} A_{\epsilon}(p) \neq \emptyset \right\}$$







• $A_{\epsilon} \simeq C_{\epsilon}$

 $-A_{o} = \emptyset$

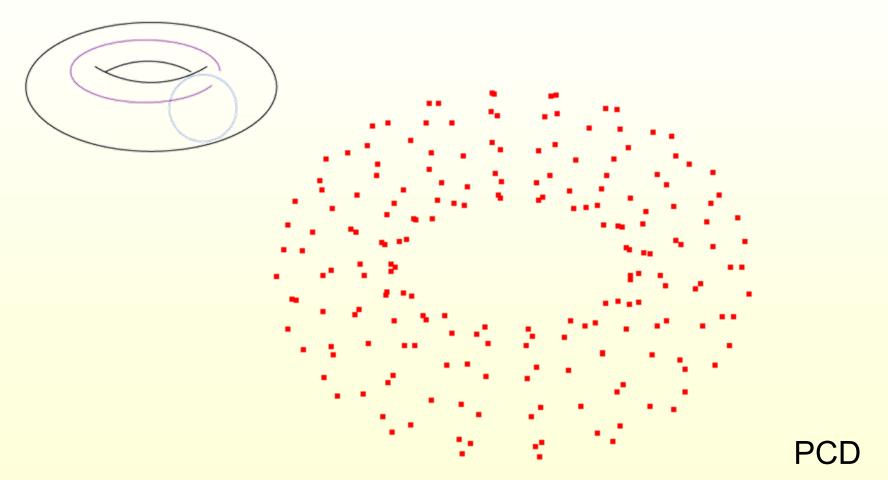
 $- A_{\epsilon} \subseteq D$

 $-A_{\infty} = D$

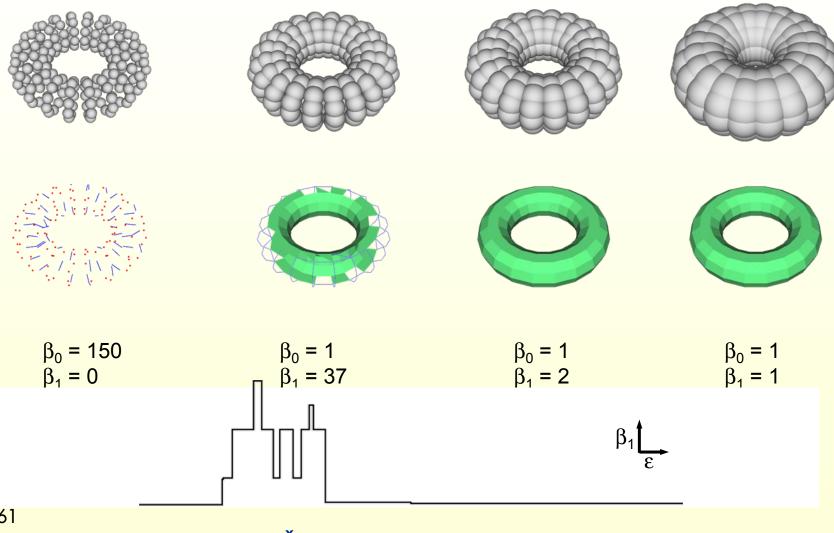
• [Edelsbrunner, Kirkpatrick, and Seidel '83], et al.

Persistent Homology

Detecting a Torus

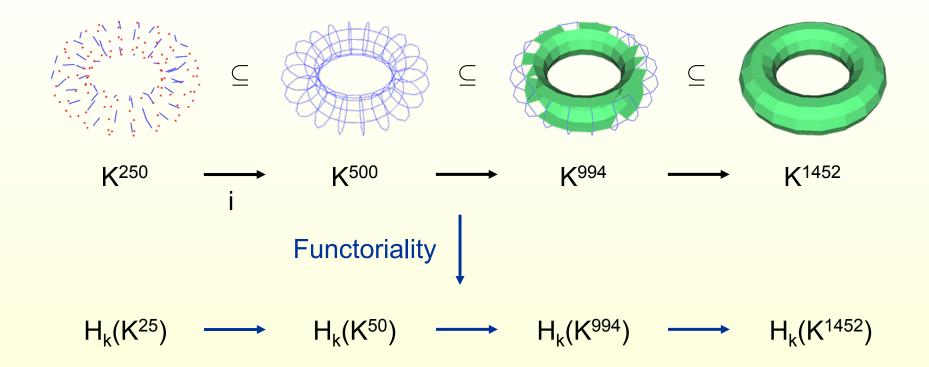


Question of Scale: A Filtration



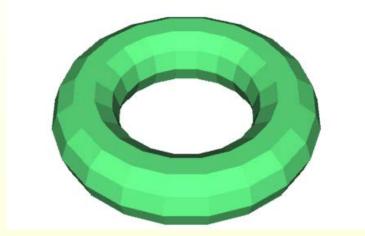
Čech Filtration

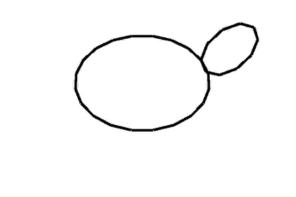
Inductive Systems on Complexes



Idea: Follow basis elements from birth to death while maintaining compatible bases

Consistent Bases Exist





Persistent Homology

[Zomorodian. Edelsbrunner, Letcher 2002]

• Homology: $H_k(K^I) = Z_k(K^I) / B_k(K^I)$

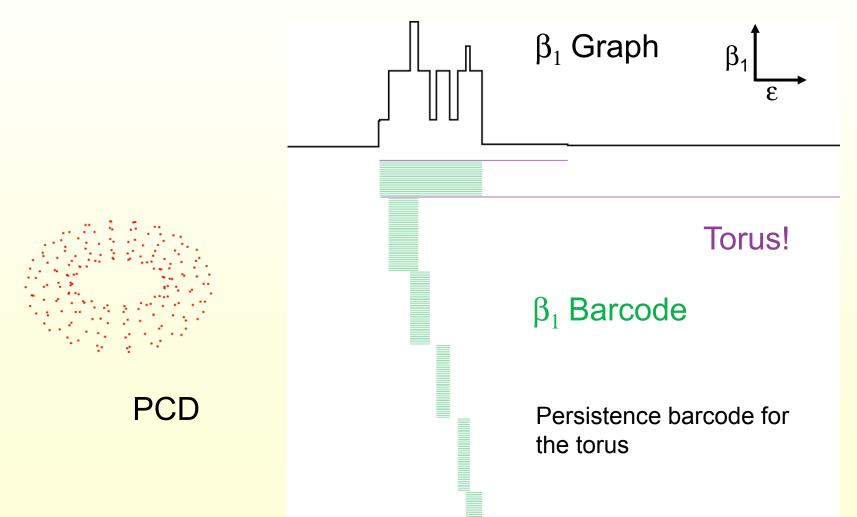
The p-persistent k-th Homology group

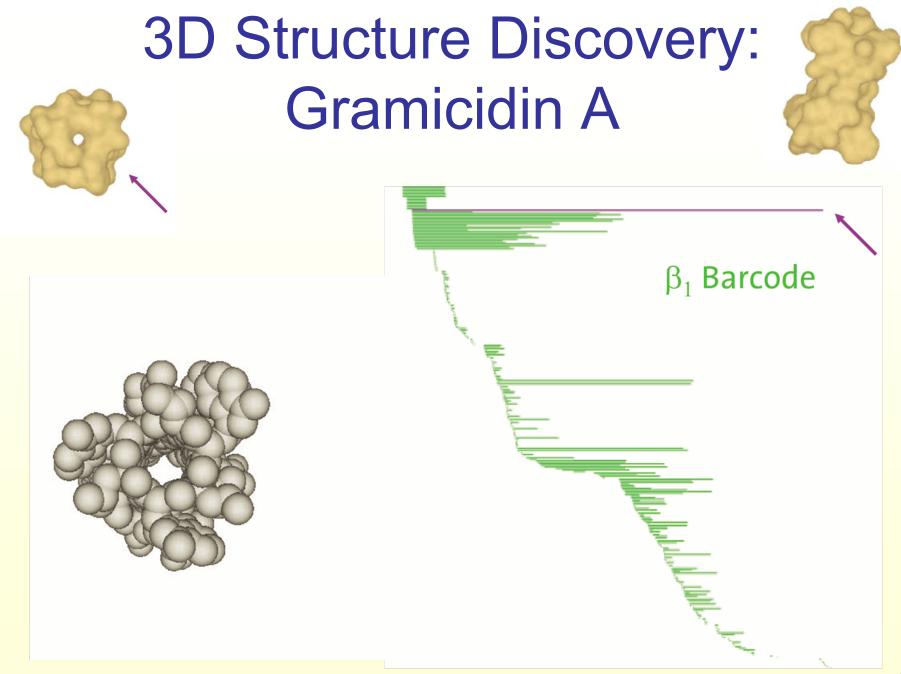
$$\mathsf{H}_{\mathsf{k}}^{\mathsf{I},\mathsf{p}} = \mathsf{Z}_{\mathsf{k}}^{\mathsf{I}} / (\mathsf{B}_{\mathsf{k}}^{\mathsf{I}+\mathsf{p}} \cap \mathsf{Z}_{\mathsf{k}}^{\mathsf{I}})$$

Persistent topological features are part of the shape; transient ones may be noise.

Persistence Barcode: multiset of intervals

Deconstructing the Graph





Making Topology a Finer Tool

Geometry discriminating

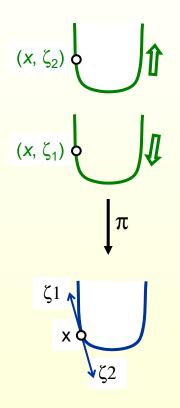
Topology classifying

- Topology: connectivity of a space
- Key Idea: no reason to look at the original space only
 - Add geometry \Rightarrow look at derived space(s)
 - Compute topology of derived space(s)
 - 1. Find filtration
 - 2. Compute persistence

via the tangent complex

Our recipe

2-D Curve Tangent Complex

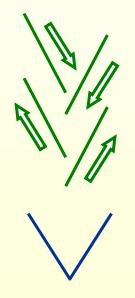


T(X) has two components: $\beta_0(T(X)) = 2$

There are two points in its fiber $\pi^{-1}(x)$

Every point x on a smooth curve X has two tangent directions.

A corner point has four tangent directions: $\beta_0(T(X)) = 4$



3-D Curvature-Filtered Tangent Complex

- Oerived space
 - T⁰(X): space of (point, tangent)
 - Tangent complex T(X): closure of T⁰(X)
- Filtration by increasing curvature
 - Let ρ(x, ζ) be the radius of the circle of second order contact
 - $T_{\delta}^{0}(X)$: points of $T^{0}(X)$ with $1/\rho \leq \delta$.
 - $T_{\delta}(X)$: closure of $T_{\delta}^{O}(X)$

• Filtered tangent complex T^{filt}(X) is the family

$$\{T_{\delta}(X)\}_{\delta \geq 0}$$

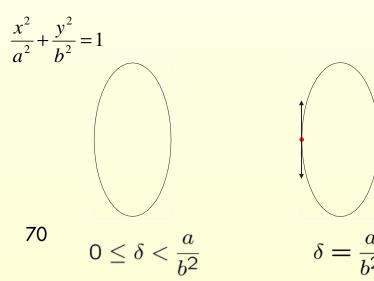
 $T(X)_r$

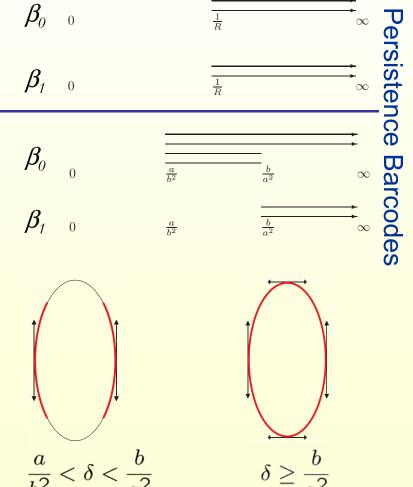
X

Persistence Barcodes: Circle vs. Ellipse

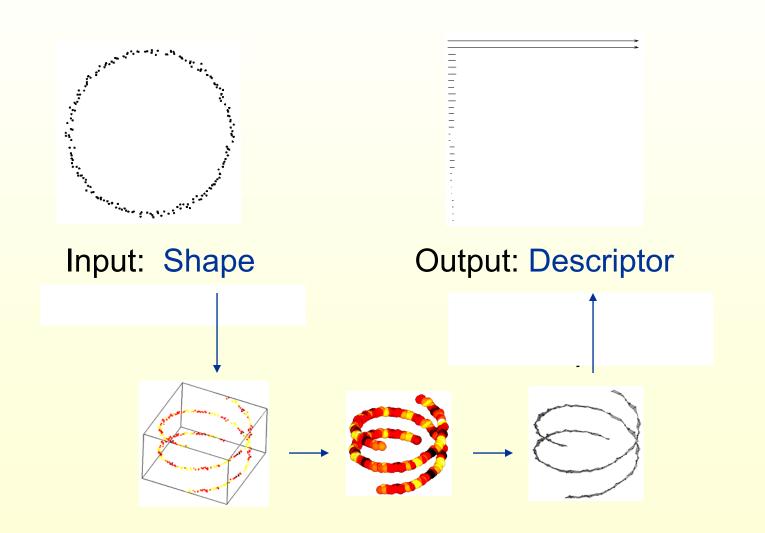
 T^{filt} (circle of radius R) is simple: β_0 the entire complex (2 copies of circle)appears at once, at= 1/R. β_1 β_1

T^{*filt*}(ellipse) evolves through four stages: points at *lower* curvature appear earlier.

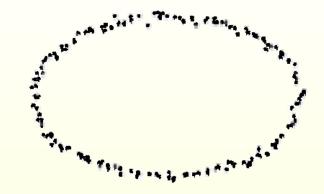




Applying Barcodes to 2D PCDs



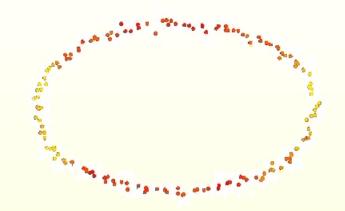
Fibers



• PCD $P \subset X$, sampled from smooth closed 1-manifold

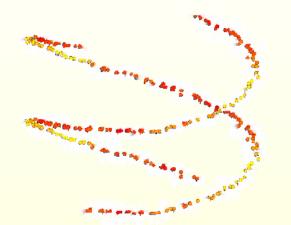
• We compute tangent fibers $\pi^{-1}(P)$ by normal estimation at each point

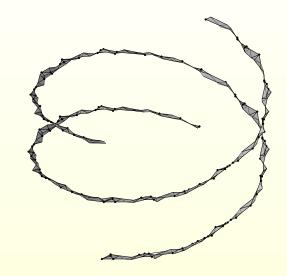
Filtering by Curvature



- Construct tangent complex incrementally
- Transform points to coordinate frame provided by tangent computation
- Fit osculating parabola to estimate curvature (more robust integral methods possible)

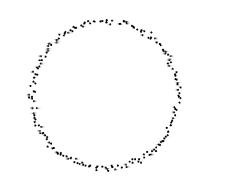
Approximating T(X)

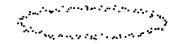




• $\mathbb{R}^n \times \mathbb{S}^{n-1}$ with $ds^2 = dx^2 + \omega^2 d\zeta^2$ • $T(X) \approx \bigcup_{p \in \pi^{-1}(P)} \mathsf{B}_{\varepsilon}(p)$

Family of Ellipses





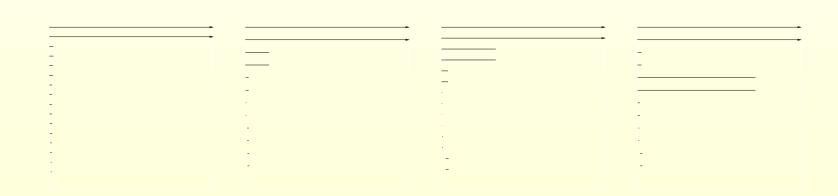
	>
_	
—	
—	
-	
_	
_	
_	
_	
_	
_	
-	
-	
_	
_	
_	
_	
-	
•	
75	

- —
- _
- -
- -
- -
- -
- -
- -
- -

- .
- _
- _

- -
- -
- -
- -

Articulated Arm Parametrization



76

Summary

- We are flooded by point set *data* and need to find structure in them
- *Topology* studies connectivity of spaces
- Topological analysis may be viewed as generalization of clustering
- To analyze point sets, we require a *combinatorial representation* approximating the original space
- *Homology* focuses on the structure of cycles
- *Persistent homology* analyzes the relationship of structures at multiple scales