CS164: Simplicial Complexes, Homology, Persistence

Leonidas Guibas Computer Science Dept. Stanford University

[Most slides: Afra Zomorodian]

Why Topology?

- Topology is the study of connectivity
- It investigates properties of shapes and spaces that are less sensitive to exact metric information
- As a consequence, it produces shape and space invariants that are robust to many kinds of deformation and noise

cross-handle $=2$ cross-caps

Computational Representations

of Topology

- We need to find discrete representations of infinite, continuous topological spaces
- We need to develop efficient algorithms for the manipulation of such representations, as well as for extracting topological information from them

Simplicial Complexes

Simplices

- A k-simplex is the convex hull of $k+1$ affinely independent points $S=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$. The points in S are the vertices of the simplex.
- A k-simplex is a k-dimensional subspace of $\mathbb{R}^{d}, \operatorname{dim} \sigma=k$.

Faces

- σ : a k-simplex defined by $S=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$.
- τ defined by $T \subseteq S$ is a face of σ
- σ is its coface.
- $\sigma \geq \tau$ and $\tau \leq \sigma$.
- $\sigma \leq \sigma$ and $\sigma \geq \sigma$.

sinnoícial connex

- A simplicial complex K is a finite set of simplices such that

1. $\sigma \in K, \tau \leq \sigma \Rightarrow \tau \in K$,
2. $\sigma, \sigma^{\prime} \in K \Rightarrow \sigma \cap \sigma^{\prime} \leq \sigma, \sigma^{\prime}$ or $\sigma \cap \sigma^{\prime}=\emptyset$.

- The dimension of K is $\operatorname{dim} K=\max \{\operatorname{dim} \sigma \mid \sigma \in K\}$.
- The vertices of K are the zero-simplices in K.
- A simplex is principal if it has no proper coface in K.

Yes

No

No

A Triangle Mesh is a Simplicial Complex

Abstract Simplicial Complex

- An abstract simplicial complex is a set K, together with a collection \mathcal{S} of subsets of K called (abstract) simplices such that:

1. For all $v \in K,\{v\} \in \mathcal{S}$. We call the sets $\{v\}$ the vertices of K.
2. If $\tau \subseteq \sigma \in \mathcal{S}$, then $\tau \in \mathcal{S}$.

- We call \mathcal{S} the complex.

Relationship

- Let K be a simplicial complex with vertices V and let \mathcal{S} be the collection of all subsets $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ of V such that the vertices $v_{0}, v_{1}, \ldots, v_{k}$ span a simplex of K. Then, \mathcal{S} is the vertex scheme of K.
- K and \mathcal{S} form an abstract simplicial complex.
- Two abstract simplicial complexes are isomorphic if we can one from the other by renaming vertices.
- (Theorem) Every abstract complex \mathcal{S} is isomorphic to the vertex scheme of some simplicial complex K.
- We call K a geometric realization of \mathcal{S}.

An Example

Subcomplex

- A subcomplex is a simplicial complex $L \subseteq K$. The smallest subcomplex containing a subset $L \subseteq K$ is its closure, $\mathrm{Cl} L=\{\tau \in K \mid \tau \leq \sigma \in L\}$.
- Everything "below" is included.

Star

- The star of L contains all of the cofaces of L, St $L=\{\sigma \in K \mid \sigma \geq \tau \in L\}$.
- Everything "above" is included.
- Stars are analogs of neighborhoods (open).

Link

- The link of L is the boundary of its star, $\operatorname{Lk} L=\mathrm{ClSt} L-\mathrm{St}(\mathrm{Cl} L-\{\emptyset\})$.

Triangulations

- The underlying space $|K|$ of a simplicial complex K is $|K|=\cup_{\sigma \in K} \sigma$.
- $|K|$ is a topological space.
- A triangulation of a topological space \mathbb{X} is a simplicial complex K such that $|K| \approx \mathbb{X}$.

We typically study shapes and spaces via triangulations of them

Orientability

- An orientation of a k-simplex $\sigma \in K, \sigma=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}, v_{i} \in K$ is an equivalence class of orderings of the vertices of σ, where

$$
\left(v_{0}, v_{1}, \ldots, v_{k}\right) \sim\left(v_{\tau(0)}, v_{\tau(1)}, \ldots, v_{\tau(k)}\right)
$$

are equivalent orderings if the parity of the permutation τ is even.

- We denote an oriented simplex, a simplex with an equivalence class of orderings, by $[\sigma]$.

Orientanility

- Two k-simplices sharing a $(k-1)$-face σ are consistently oriented if they induce different orientations on σ.
- A triangulable d-manifold is orientable if all d-simplices can be oriented consistently.
- Otherwise, the d-manifold is non-orientable

Invariants

- A (topological) invariant is a map f that assigns the same object to spaces of the same topological type.
- $\mathbb{X} \approx \mathbb{Y} \Longrightarrow f(\mathbb{X})=f(\mathbb{Y})$
- $f(\mathbb{X}) \neq f(\mathbb{Y}) \Longrightarrow \mathbb{X} \not \approx \mathbb{Y} \quad$ (contrapositive)
- $f(\mathbb{X})=f(\mathbb{Y}) \Longrightarrow$ nothing
- "coarser" differentiation

Invariants provide partial information about a space

Euler Characteristic

- K a simplicial complex with $s_{k} k$-simplices.
- The Euler characteristic $\chi(K)$ is

$$
\chi(K)=\sum_{i=0}^{\operatorname{dim} K}(-1)^{i} s_{i}=\sum_{\sigma \in K-\{\varnothing\}}(-1)^{\operatorname{dim} \sigma} .
$$

- $v-e+f=1$ (Graph Theory)
- Invariant for $|K|$
- Any triangulation gives the same answer!
- Intrinsic property

Basic 2-Manifolds

2-Manifold	χ
Sphere \mathbb{S}^{2}	2
Torus \mathbb{T}^{2}	0
Klein bottle \mathbb{K}^{2}	0
Projective plane $\mathbb{R P}^{2}$	1

Euler and Connected Sums

- (Theorem) For compact surfaces $\mathbb{M}_{1}, \mathbb{M}_{2}$, $\chi\left(\mathbb{M}_{1} \# \mathbb{M}_{2}\right)=\chi\left(\mathbb{M}_{1}\right)+\chi\left(\mathbb{M}_{2}\right)-2$.
- $\chi\left(g \mathbb{T}^{2}\right)=2-2 g$
- $\chi\left(g \mathbb{R} \mathbb{P}^{2}\right)=2-g$
- The connected sum of g tori is called a surface with genus g.

Compact 2-Manifolds

- $\mathrm{d}=2$: orientable

- d = 2: non-orientable

add cross-caps

Klein Bottle

Euler characteristic and orientability are two invariants providing a full classification of compact 2-manifolds

$d=3:$ Very hard

[Grigori Perelman, 2003]

Homology

Homology

Why Homology?

- Algebraization of first layer of geometry in structures
- How cells of dimension n attach to cells of dimension $n-1$
- Less transparent, more machinery
- Combinatorial
- Finite description
- Computable

Chain Group

- Simplicial complex K
- k-chain: $c=\sum_{i} n_{i}\left[\sigma_{i}\right], n_{i} \in \mathbb{Z}, \sigma_{i} \in K$ (like a path)
- $[\sigma]=-[\tau]$ if $\sigma=\tau$ and σ and τ have different orientations.
- The k th chain group C_{k} of K is the free abelian group on its set of oriented k-simplices
- $\operatorname{rank} \mathrm{C}_{k}=$?

Boundary Operator

- The boundary operator $\partial_{k}: \mathrm{C}_{k} \rightarrow \mathrm{C}_{k-1}$ is a homomorphism defined linearly on a chain c by its action on any simplex

$$
\begin{aligned}
\sigma=\left[v_{0}, v_{1}, \ldots, v_{k}\right] & \in c, \\
\partial_{k} \sigma & =\sum_{i}(-1)^{i}\left[v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right],
\end{aligned}
$$

where $\hat{v_{i}}$ indicates that v_{i} is deleted from the sequence.

- $\partial_{1}[a, b]=b-a$.
- $\partial_{2}[a, b, c]=[b, c]-[a, c]+[a, b]=[b, c]+[c, a]+[a, b]$.
- $\partial_{3}[a, b, c, d]=[b, c, d]-[a, c, d]+[a, b, d]-[a, b, c]$.
- $\partial_{1} \partial_{2}[a, b, c]=[c]-[b]-[c]+[a]+[b]-[a]=0$.

Boundary Theorem

- (Theorem) $\partial_{k-1} \partial_{k}=0$, for all k.
- Proof:

$$
\begin{aligned}
\partial_{k-1} \partial_{k}\left[v_{0},\right. & \left.v_{1}, \ldots, v_{k}\right]= \\
= & \partial_{k-1} \sum_{i}(-1)^{i}\left[v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right] \\
= & \sum_{j<i}(-1)^{i}(-1)^{j}\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right] \\
& +\sum_{j>i}(-1)^{i}(-1)^{j-1}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, \hat{v}_{j}, \ldots, v_{k}\right] \\
= & 0,
\end{aligned}
$$

as switching i and j in the second sum negates the first sum.

Chain Complex

- The boundary operator connects the chain groups into a chain complex C_{*} :

$$
\ldots \rightarrow \mathbf{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathbf{C}_{k} \xrightarrow{\partial_{k}} \mathbf{C}_{k-1} \rightarrow \ldots
$$

Cycle Group

- Let c be a k-chain
- If it has no boundary, it is a k-cycle (zycle?)
- $\partial_{k} c=\emptyset$, so $c \in \operatorname{ker} \partial_{k}$
- The k th cycle group is

$$
\mathbf{Z}_{k}=\operatorname{ker} \partial_{k}=\left\{c \in \mathbf{C}_{k} \mid \partial_{k} c=\emptyset\right\}
$$

Boundary Group

- Let b be a k-chain
- If b is a boundary of something, it is a k-boundary.
- The k th boundary group is

$$
\mathbf{B}_{k}=\operatorname{im} \partial_{k+1}=\left\{c \in \mathbf{C}_{k} \mid \exists d \in \mathbf{C}_{k+1}: c=\partial_{k+1} d\right\} .
$$

Nesting Property

- Let b be a k-boundary.
- Then, $\exists c \in \mathbf{C}_{k+1}$, such that $b=\partial_{k+1} c$.
- What is the boundary of b ?

$$
\partial_{k} b=\partial_{k} \partial_{k+1} c=\emptyset,
$$

by the boundary theorem.

- That is, every boundary is a cycle!
- $\mathrm{B}_{k} \subseteq \mathrm{Z}_{k} \subseteq \mathrm{C}_{k}$

Cycle Equivalence

- z is a k-cycle
- b is a k-boundary
- We would like to have $z+b$ be equivalent to z
- That is, if $z_{1}-z_{2}=b$ where b is a boundary, then $z_{1} \sim z_{2}$
- Any boundary would do!

Simplicial Homology

- The k th homology group is

$$
\mathrm{H}_{k}=\mathbf{Z}_{k} / \mathrm{B}_{k}=\operatorname{ker} \partial_{k} / \operatorname{im} \partial_{k+1} .
$$

- If $z_{1}=z_{2}+\mathbf{B}_{k}, z_{1}, z_{2} \in \mathbf{Z}_{k}$, we say z_{1} and z_{2} are homologous
- $z_{1} \sim z_{2}$.

Z_{2} Homology

- H_{k} is a vector space
- kth Betti number $\beta_{\mathrm{k}}=$ rank H_{k}

$$
=\operatorname{rank} Z_{k}-\operatorname{rank} B_{k}
$$

- Enrico Betti (1823-1892)
- Geometric interpretation in R3
- β_{0} is number of components
- β_{1} is rank of a basis for tunnels
- β_{2} is number of voids

1, 2, 1

Homology of 2-Manifolds

2-manifold	H_{0}	H_{1}	H_{2}
sphere	\mathbb{Z}	$\{0\}$	\mathbb{Z}
torus	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}
projective plane	\mathbb{Z}	\mathbb{Z}_{2}	$\{0\}$
Klein bottle	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}_{2}$	$\{0\}$

Again, homology is independent of the triangulation

Euler Revisited

- Let K be a simplicial complex and $s_{i}=|\{\sigma \in K \mid \operatorname{dim} \sigma=i\}|$. The Euler characteristic $\chi(K)$ is

$$
\chi(K)=\sum_{i=0}^{\operatorname{dim} K}(-1)^{i} s_{i}=\sum_{\sigma \in K-\{\emptyset\}}(-1)^{\operatorname{dim} \sigma} .
$$

- We have new language!
- Let C_{*} be the chain complex on K
- $\operatorname{rank}\left(\mathrm{C}_{i}\right)=|\{\sigma \in K \mid \operatorname{dim} \sigma=i\}|$
- $\chi(K)=\chi\left(\mathbf{C}_{*}\right)=\sum_{i}(-1)^{i} \operatorname{rank}\left(\mathbf{C}_{i}\right)$.

Euler-Poincaré

- Homology functors H_{*}
- $H_{*}\left(C_{*}\right)$ is a chain complex:

$$
\ldots \rightarrow \mathbf{H}_{k+1} \xrightarrow{\partial_{k+1}} \mathbf{H}_{k} \xrightarrow{\partial_{k}} \mathbf{H}_{k-1} \rightarrow \ldots
$$

- What is its Euler characteristic?
- $($ Theorem $) ~ \chi(K)=\chi\left(\mathbf{C}_{*}\right)=\chi\left(\mathbf{H}_{*}\left(\mathbf{C}_{*}\right)\right)$.
- $\sum_{i}(-1)^{i} s_{i}=\sum_{i}(-1)^{i} \operatorname{rank}\left(\mathrm{H}_{i}\right)=\sum_{i}(-1)^{i} \beta_{i}$
- Sphere: $2=1-0+1$
- Torus: $0=1-2+1$

Point Clouds and the Complex Zoo

What Does This All Mean for Point Clouds or Meshes?

Topology of Points

A Hidden Space X

- Topological space \mathbb{X}
- Underlying space
- Given: set of sample points M from \mathbb{X}

- Question: How can we recover the topology of \mathbb{X} from M ?
- Problem: M has no interesting topology.

Open Cover

Formally

- Cover $\mathcal{U}=\left\{\mathrm{U}_{\mathrm{i}}\right\}_{\mathrm{i} \in \mathrm{I}}$
- U_{i}, open
$-M \subseteq U_{i \in 1} U_{i}$
- Idea: The cover approximates the
 underlying space \mathbb{X}
- Question': What is the topology of \mathcal{U} ?
- Problem: \mathcal{U} is an infinite point set

The Nerve of the Cover

An abstract simplicial complex

Formally

- \mathbb{X} : topological space
- $\mathcal{U}=U_{i \in I} U_{i}$: open cover of \mathbb{X}
- The nerve N of \mathcal{U} is

- $\emptyset \in N$
- If $\cap_{\mathrm{j} \in \mathrm{j}} \mathrm{U}_{\mathrm{j}} \neq \emptyset$ for $\mathrm{J} \subseteq \mathrm{I}$, then $\mathrm{J} \in \mathrm{N}$
- Dual structure
- (Abstract) Simplicial complex

The Nerve Lemma

- (Lemma [Leray]) If sets in the cover are contractible, and their finite unions are contractible, then $\mathrm{N} \simeq \mathcal{U}$. intersections

- The cover should not introduce or eliminate topological structure
- Idea: Use "nice" sets for covering
- contractible
- convex
- Dual (abstract) simplicial complex will be our representation

The Čech Complex

Ball radius is a parameter ε

Formally

- Set: Ball of radius ε

$$
\mathrm{B}_{\varepsilon}(\mathrm{x})=\{\mathrm{y} \mid \mathrm{d}(\mathrm{x}, \mathrm{y})<\varepsilon\}
$$

- Cover: B_{ε} at every point in M

- Cech complex is nerve of the union of ε-balls

$$
C_{\epsilon}(M)=\left\{\operatorname{conv} T \mid T \subseteq M, \bigcup_{m \in T} B_{\epsilon}(m) \neq \emptyset\right\}
$$

- Cover satisfies Nerve Lemma
- Eduard Cech (1893-1960)

Vietoris-Rips Complex

Distance is a parameter ε

Formally

1. Construct ε-graph
2. Expand by add a simplex whenever all its faces are in the complex

- Note: We expand by dimension

$$
V_{\epsilon}(M)=\{\operatorname{conv} T \mid T \subseteq M, \mathrm{~d}(x, y)<\epsilon, \forall x, y \in T\}
$$

- $V_{2 \varepsilon}(M) \supseteq C_{\varepsilon}(M)$
- Not homotopic to union of balls
- Leopold Vietoris (1891-2002)
- Eliyahu Rips (1948-)

Geometric Complexes: Voronoi

Dual Complex: Delaunay

Restricted Voronoi

Ball radius is a parameter ε

Alpha Complex

Ball radius is a parameter ε

Subcomplex of Delaunay

Formally

- Alpha cell: $A_{\varepsilon}(p)=B_{\varepsilon}(p) \cap V(p)$
- Alpha shape: union of alpha cells
- Alpha complex: nerve of alpha shape

$$
A_{\epsilon}(M)=\left\{\operatorname{conv} T \mid T \subseteq M, \bigcap_{p \in T} A_{\epsilon}(p) \neq \emptyset\right\}
$$

- Let D be the Delaunay triangulation

$$
\begin{aligned}
& -\mathrm{A}_{o}=\emptyset \\
& -\mathrm{A}_{\varepsilon} \subseteq \mathrm{D} \\
& -\mathrm{A}_{\infty}=\mathrm{D}
\end{aligned}
$$

- $\mathrm{A}_{\varepsilon} \simeq \mathrm{C}_{\varepsilon}$
- [Edelsbrunner, Kirkpatrick, and Seidel '83], et al.

Persistent Homology

Detecting a Torus

PCD

Question of Scale: A Filtration

$\beta_{0}=150$

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=2
\end{aligned}
$$

$$
\beta_{0}=1
$$

$$
\beta_{1}=1
$$

Čech Filtration

Inductive Systems on Complexes

Idea: Follow basis elements from birth to death while maintaining compatible bases

Consistent Bases Exist

Persistent Homology

[Zomorodian. Edelsbrunner, Letcher 2002]

- Homology: $H_{k}\left(K^{\prime}\right)=Z_{k}\left(K^{\prime}\right) / B_{k}\left(K^{\prime}\right)$
- The p-persistent k-th Homology group

$$
H_{k}^{l, p}=Z_{k}{ }^{1} /\left(B_{k}^{l+p} \cap Z_{k}{ }^{\prime}\right)
$$

Persistent topological features are part of the shape; transient ones may be noise.

- Persistence Barcode: multiset of intervals

Deconstructing the Graph

Torus!

β_{1} Barcode

PCD
Persistence barcode for the torus

3D Structure Discovery: Gramicidin A

Making Topology a Finer Tool

Geometry discriminating

Topology
classifying

- Topology: connectivity of a space
- Key Idea: no reason to look at the original space only
- Add geometry \Rightarrow look at derived space(s)
- Compute topology of derived space(s)

1. Find filtration
2. Compute persistence

2-D Curve Tangent Complex

$T(X)$ has two components:
$\beta_{0}(T(X))=2$
There are two points in its fiber $\pi^{-1}(x)$

Every point x on a smooth curve X has two tangent directions.

A corner point has four tangent directions:
$\beta_{0}(T(X))=4$

3-D Curvature-Filtered Tangent Complex

- Derived space
- $T^{0}(X)$: space of (point, tangent)
- Tangent complex $T(X)$: closure of $T^{0}(X)$
- Filtration by increasing curvature
- Let $\rho(x, \zeta)$ be the radius of the circle of second order contact
- $T_{\delta}{ }^{0}(\mathrm{X})$: points of $T^{0}(\mathrm{X})$ with $1 / \rho \leq \delta$.
- $\mathrm{T}_{\delta}(\mathrm{X})$: closure of $T_{\delta}{ }^{\circ}(\mathrm{X})$
- Filtered tangent complex $T^{\text {filt }}(\mathrm{X})$ is the family

$$
\left\{T_{\delta}(X)\right\}_{\delta \geq 0}
$$

Persistence Barcodes: Circle vs. Ellipse

$T^{\text {filt }}$ (circle of radius R) is simple:
the entire complex (2 copies of circle) appears at once, at $=1 / R$.
$T^{\text {filt }}$ (ellipse) evolves through four stages: points at lower curvature appear earlier.
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
β_{0} 。

$$
\frac{a}{b^{2}}<\delta<\frac{b}{a^{2}}
$$

$$
\delta \geq \frac{b}{a^{2}}
$$

70

$$
0 \leq \delta<\frac{a}{b^{2}} \quad \delta=\frac{a}{b^{2}}
$$

Applying Barcodes to 2D PCDs

Input: Shape
Output: Descriptor

Fibers

- PCD $P \subset X$, sampled from smooth closed 1-manifold
- We compute tangent fibers $\pi^{-1}(P)$ by normal estimation at each point

Filtering by Curvature

- Construct tangent complex incrementally
- Transform points to coordinate frame provided by tangent computation
- Fit osculating parabola to estimate curvature (more robust integral methods possible)

Approximating $T(X)$

- $\mathbb{R}^{n} \times \mathbb{S}^{n-1}$ with $\mathrm{d} s^{2}=\mathrm{d} x^{2}+\omega^{2} \mathrm{~d} \zeta^{2}$
- $T(X) \approx \bigcup_{p \in \pi^{-1}(P)} \mathrm{B}_{\varepsilon}(p)$

Family of Ellipses

Articulated Arm Parametrization

Summary

- We are flooded by point set data and need to find structure in them
- Topology studies connectivity of spaces
- Topological analysis may be viewed as generalization of clustering
- To analyze point sets, we require a combinatorial representation approximating the original space
- Homology focuses on the structure of cycles
- Persistent homology analyzes the relationship of structures at multiple scales

