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Problem Definition

• Given a set     of points in space and a query 
point     find its nearest neighbor in     :



Problem Definition

• Given a set     of points in space and a query 
point     find its nearest neighbor in     :

• In Euclidean space:

• Can solve in               with brute force search. 

• Want sublinear query time with reasonable 
preprocessing and storage requirements.



Why is this important?

• Alignment: part of the ICP algorithm.

• Collision Detection: are the 2 shapes too close?

• Normal Estimation, surface reconstruction, 
rendering… Many, many others



Let’s start in 1D.

• Given a collection of points on the line (x axis), 
and a query point. Find its nearest neighbor.

• Note that points have an ordering. So find the 
interval:                        and                              . 

• This is binary search!



Let’s start in 1D.

• Given a collection of points on the line (x axis), 
and a query point. Find its nearest neighbor.

• Preprocessing: 
Sort the points in time. 

• Answering a query: 
Binary search to find the interval, and report the 
closest of the two points.                    time. 

• Perfect method!



In 2D things get complicated.

• Given a collection of points and a query point. 
Find its nearest neighbor.

• Points do not have a natural ordering. Closest 
points along each axis can be different.

• However, can extend a similar intuition.



In 2D things get complicated.

• Remember the Voronoi diagram:

• Partition the space into “influence regions.”

• Finding  the nearest point = finding the region 
that contains the query point.



Point Location in 2D. Kirkpatrick’s Algorithm.

• Achieves optimal query time with   
storage and preprocessing.  

• Assume that the  planar subdivision is a 
triangulation. Locating a point inside a set of 
triangles.



Point Location in 2D. Kirkpatrick’s Algorithm.

• Convert Voronoi diagram into a triangulation.

1. Compute the bounding triangle
2. Inside each face, pick a vertex and connect 

others to it. Possible since faces are convex.

s



s

Point Location in 2D. Kirkpatrick’s Algorithm.

• Main Idea: Binary search on triangles.
• Create a hierarchy, such that answering a query 

involves descending in                 steps.



Point Location in 2D. Kirkpatrick’s Algorithm.

• Creating the hierarchy: 
▫ Start with all triangles:
▫ Delete a constant fraction of vertices, and   

retriangulate to get      .
▫ Make sure that every triangle in       overlaps a  

constant number of triangles in  

iterate

Image by D. Mount 



Point Location in 2D. Kirkpatrick’s Algorithm.

• By construction the number of triangulations is                 . 

• Answering a point location query:
▫ Traverse the hierarchy from       to      . 
▫ Find which triangle in contains    :            time. 
▫ Will terminate in .  

Image by D. Mount 



Point Location in 2D. Kirkpatrick’s Algorithm.

• Main question:
▫ Can we always find a good set of vertices to delete?

• Main observation:
▫ Consider set of independent vertices with bounded degree.

▫ Removing each, creates a hole of size at most 
▫ New triangles will intersect at most     old ones. 



Point Location in 2D. Kirkpatrick’s Algorithm.

• Main question:
▫ Can we always find a good set of vertices to delete?

• Main lemma:
▫ Consider set of independent vertices with degree less than   . 

▫ If  there are at least independent vertices 
whose degree is at most   . Can find them greedily in            .

▫ Follows from the fact that in a planar graph, the average 
degree is at most      Many points of degree under 



Point Location in 2D.

• Problems:
▫ At each step, reducing the size by            , would like         .
▫ More practical algorithms exist: take CS268!
▫ In        no method is known with           space and                    

query time.
▫ Complexity of the Voronoi diagram:             in     ,  but grows 

quickly with dimension:  . 
▫ Need a more practical algorithm!



Nearest Neighbor in 3D.

• Simple, yet practical methods, perhaps at the expense 
of worst case running times.

• First simple Idea:
Partition the space into a grid, such that each cell 
contains a constant number of points.



Voxel Grids in 2D/3D

• Partition the space into a grid with a constant 
number of points per cell.

• Answering a query:
1. Locate the cell containing    . time.  
2. Perform a spiral search of neighboring cells within 

distance     from   . Update     as you go. 



Voxel Grids in 2D/3D

• Easy to implement: entire grid is a 2/3D array. Can 
work if the points are roughly uniformly spaced. 

• If points are sampled uniformly in a unit cube, use 
grid of size: . Expected     points per cell.

• Theorem: For uniform distribution, spiral search 
finishes in           time. [Bentley, Weide, Yao ’80]

• Bad if non-uniform. Many Empty cells!



Nearest Neighbor in 3D.

• Simple, yet practical methods, perhaps at the expense 
of worst case running times.

• Second Simple Idea:
Recursively partition the space into 4 cells (2D)/8 
cells (3D). Quad/Oct-trees.



Quad trees in 2D/3D

• Recursively partition the space into 4 (2D)/8 (3D) 
cells until each cell has a constant number of points.

• Answering a query:
Cells do not have direct access to neighbors. Need a 

different method. 



Quad trees in 2D/3D

• Recursively partition the space into 4 (2D)/8 (3D) 
cells until each cell has a constant number of points.

• Do a depth first search to find the cell where    is 
located. If find a leaf, update   . 

• Descend into cells that are less than    away from   .  



Nearest neighbor search is Quad trees

• Complete Algorithm:

▫ put the root on the stack, r =  
▫ repeat

pop the next node T from the stack
for each child C of T :

if C is a leaf, examine point(s) in C, update r
if C intersects with the ball of radius r around q, add C
to the stack ordered by distance from q



Nearest neighbor search is Quad trees

• Main problem with Quad Trees: many empty cells. 
• If the data is unbalanced, can take a very long time 

to subdivide

• Need more intelligent splitting rules.



kD-trees

• Two main differences from Quad trees:
1. Split dimension by dimension (not together)
2. During each split, try to make the tree as 

balanced as possible

Many Strategies. Common: cycle through dimensions 
and each time split along the median.



kD-trees

• Guaranteed not to have empty cells.

• Median of     points can be found in            time.
• Construction is                     .  

• Query can be done in the same way as in quad-trees.
• Query time depends on the distribution of points.

• In the worst case, have to examine all cells:



Nearest neighbor query with a kD-tree

• Depth first search to find the cell containing    .
• Set .  
• Go up the tree inspecting cells closer than    from   , 

where    is the distance to the closest point so far.



kD-trees

• Query example 1:

Image by S. Renals



kD-trees

• Query example 2:

Image by S. Renals



kD-trees

• Main goals:
▫ Keep the tree balanced (no empty cells).
▫ Avoid making skinny rectangles (many neighbors).

• These are conflicting goals. Quad-tree have good 
aspect ratios, with many empty cells.

• Common modification: instead of cycling through 
dimensions, pick the one along which points are 
most spread.



kD-trees

• Not guaranteed to work. Many interesting splitting 
schemes have been proposed.

Friedman et al. Quad Tree Arya & Fu

Songrit Maneewongvatana and David M. Mount  It's okay to be skinny, if 
your friends are fat, 1999



kD-trees

• In practice, kD-trees work remarkably well. 

• Can be extended to higher dimensions, but other 
problems arise: exponential dependence of the query 
time on the dimension. 

• Can be extended for approximate nearest neighbor 
queries: we’re happy with a point that’s close to the 
nearest neighbor. Much more efficient in high D.

• No need to implement the kD-tree from scratch. A very 
robust implementation: ANN by Arya and Mount:

http://www.cs.umd.edu/~mount/ANN/
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