
Nearest Neighbor Search
CS164

Problem Definition

• Given a set of points in space and a query
point find its nearest neighbor in :

Problem Definition

• Given a set of points in space and a query
point find its nearest neighbor in :

• In Euclidean space:

• Can solve in with brute force search.

• Want sublinear query time with reasonable
preprocessing and storage requirements.

Why is this important?

• Alignment: part of the ICP algorithm.

• Collision Detection: are the 2 shapes too close?

• Normal Estimation, surface reconstruction,
rendering… Many, many others

Let’s start in 1D.

• Given a collection of points on the line (x axis),
and a query point. Find its nearest neighbor.

• Note that points have an ordering. So find the
interval: and .

• This is binary search!

Let’s start in 1D.

• Given a collection of points on the line (x axis),
and a query point. Find its nearest neighbor.

• Preprocessing:
Sort the points in time.

• Answering a query:
Binary search to find the interval, and report the
closest of the two points. time.

• Perfect method!

In 2D things get complicated.

• Given a collection of points and a query point.
Find its nearest neighbor.

• Points do not have a natural ordering. Closest
points along each axis can be different.

• However, can extend a similar intuition.

In 2D things get complicated.

• Remember the Voronoi diagram:

• Partition the space into “influence regions.”

• Finding the nearest point = finding the region
that contains the query point.

Point Location in 2D. Kirkpatrick’s Algorithm.

• Achieves optimal query time with
storage and preprocessing.

• Assume that the planar subdivision is a
triangulation. Locating a point inside a set of
triangles.

Point Location in 2D. Kirkpatrick’s Algorithm.

• Convert Voronoi diagram into a triangulation.

1. Compute the bounding triangle
2. Inside each face, pick a vertex and connect

others to it. Possible since faces are convex.

s

s

Point Location in 2D. Kirkpatrick’s Algorithm.

• Main Idea: Binary search on triangles.
• Create a hierarchy, such that answering a query

involves descending in steps.

Point Location in 2D. Kirkpatrick’s Algorithm.

• Creating the hierarchy:
▫ Start with all triangles:
▫ Delete a constant fraction of vertices, and

retriangulate to get .
▫ Make sure that every triangle in overlaps a

constant number of triangles in

iterate

Image by D. Mount

Point Location in 2D. Kirkpatrick’s Algorithm.

• By construction the number of triangulations is .

• Answering a point location query:
▫ Traverse the hierarchy from to .
▫ Find which triangle in contains : time.
▫ Will terminate in .

Image by D. Mount

Point Location in 2D. Kirkpatrick’s Algorithm.

• Main question:
▫ Can we always find a good set of vertices to delete?

• Main observation:
▫ Consider set of independent vertices with bounded degree.

▫ Removing each, creates a hole of size at most
▫ New triangles will intersect at most old ones.

Point Location in 2D. Kirkpatrick’s Algorithm.

• Main question:
▫ Can we always find a good set of vertices to delete?

• Main lemma:
▫ Consider set of independent vertices with degree less than .

▫ If there are at least independent vertices
whose degree is at most . Can find them greedily in .

▫ Follows from the fact that in a planar graph, the average
degree is at most Many points of degree under

Point Location in 2D.

• Problems:
▫ At each step, reducing the size by , would like .
▫ More practical algorithms exist: take CS268!
▫ In no method is known with space and

query time.
▫ Complexity of the Voronoi diagram: in , but grows

quickly with dimension: .
▫ Need a more practical algorithm!

Nearest Neighbor in 3D.

• Simple, yet practical methods, perhaps at the expense
of worst case running times.

• First simple Idea:
Partition the space into a grid, such that each cell
contains a constant number of points.

Voxel Grids in 2D/3D

• Partition the space into a grid with a constant
number of points per cell.

• Answering a query:
1. Locate the cell containing . time.
2. Perform a spiral search of neighboring cells within

distance from . Update as you go.

Voxel Grids in 2D/3D

• Easy to implement: entire grid is a 2/3D array. Can
work if the points are roughly uniformly spaced.

• If points are sampled uniformly in a unit cube, use
grid of size: . Expected points per cell.

• Theorem: For uniform distribution, spiral search
finishes in time. [Bentley, Weide, Yao ’80]

• Bad if non-uniform. Many Empty cells!

Nearest Neighbor in 3D.

• Simple, yet practical methods, perhaps at the expense
of worst case running times.

• Second Simple Idea:
Recursively partition the space into 4 cells (2D)/8
cells (3D). Quad/Oct-trees.

Quad trees in 2D/3D

• Recursively partition the space into 4 (2D)/8 (3D)
cells until each cell has a constant number of points.

• Answering a query:
Cells do not have direct access to neighbors. Need a

different method.

Quad trees in 2D/3D

• Recursively partition the space into 4 (2D)/8 (3D)
cells until each cell has a constant number of points.

• Do a depth first search to find the cell where is
located. If find a leaf, update .

• Descend into cells that are less than away from .

Nearest neighbor search is Quad trees

• Complete Algorithm:

▫ put the root on the stack, r =
▫ repeat

pop the next node T from the stack
for each child C of T :

if C is a leaf, examine point(s) in C, update r
if C intersects with the ball of radius r around q, add C
to the stack ordered by distance from q

Nearest neighbor search is Quad trees

• Main problem with Quad Trees: many empty cells.
• If the data is unbalanced, can take a very long time

to subdivide

• Need more intelligent splitting rules.

kD-trees

• Two main differences from Quad trees:
1. Split dimension by dimension (not together)
2. During each split, try to make the tree as

balanced as possible

Many Strategies. Common: cycle through dimensions
and each time split along the median.

kD-trees

• Guaranteed not to have empty cells.

• Median of points can be found in time.
• Construction is .

• Query can be done in the same way as in quad-trees.
• Query time depends on the distribution of points.

• In the worst case, have to examine all cells:

Nearest neighbor query with a kD-tree

• Depth first search to find the cell containing .
• Set .
• Go up the tree inspecting cells closer than from ,

where is the distance to the closest point so far.

kD-trees

• Query example 1:

Image by S. Renals

kD-trees

• Query example 2:

Image by S. Renals

kD-trees

• Main goals:
▫ Keep the tree balanced (no empty cells).
▫ Avoid making skinny rectangles (many neighbors).

• These are conflicting goals. Quad-tree have good
aspect ratios, with many empty cells.

• Common modification: instead of cycling through
dimensions, pick the one along which points are
most spread.

kD-trees

• Not guaranteed to work. Many interesting splitting
schemes have been proposed.

Friedman et al. Quad Tree Arya & Fu

Songrit Maneewongvatana and David M. Mount It's okay to be skinny, if
your friends are fat, 1999

kD-trees

• In practice, kD-trees work remarkably well.

• Can be extended to higher dimensions, but other
problems arise: exponential dependence of the query
time on the dimension.

• Can be extended for approximate nearest neighbor
queries: we’re happy with a point that’s close to the
nearest neighbor. Much more efficient in high D.

• No need to implement the kD-tree from scratch. A very
robust implementation: ANN by Arya and Mount:

http://www.cs.umd.edu/~mount/ANN/

	Nearest Neighbor Search
	Problem Definition
	Problem Definition
	Why is this important?
	Let’s start in 1D.
	Let’s start in 1D.
	In 2D things get complicated.
	In 2D things get complicated.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D. Kirkpatrick’s Algorithm.
	Point Location in 2D.
	Nearest Neighbor in 3D.
	Voxel Grids in 2D/3D
	Voxel Grids in 2D/3D
	Nearest Neighbor in 3D.
	Quad trees in 2D/3D
	Quad trees in 2D/3D
	Nearest neighbor search is Quad trees
	Nearest neighbor search is Quad trees
	kD-trees
	kD-trees
	Nearest neighbor query with a kD-tree
	kD-trees
	kD-trees
	kD-trees
	kD-trees
	kD-trees

