Nearest Neighbor Search

CS164

Problem Definition

- Given a set \mathcal{P} of points in space and a query point q find its nearest neighbor in \mathcal{P} :

$$
p_{q}=\underset{p \in \mathcal{P}}{\operatorname{argmin}} d(p, q)
$$

Problem Definition

- Given a set \mathcal{P} of points in space and a query point q find its nearest neighbor in \mathcal{P} :

$$
p_{q}=\underset{p \in \mathcal{P}}{\operatorname{argmin}} d(p, q)
$$

- In Euclidean space:

$$
p_{q}=\underset{p \in \mathcal{P}}{\operatorname{argmin}}\|p-q\|_{2}^{2}
$$

- Can solve in $O(|\mathcal{P}|)$ with brute force search.
- Want sublinear query time with reasonable preprocessing and storage requirements.

Why is this important?

- Alignment: part of the ICP algorithm.

- Collision Detection: are the 2 shapes too close?
- Normal Estimation, surface reconstruction, rendering... Many, many others

Let's start in 1D.

- Given a collection of points on the line (x axis), and a query point. Find its nearest neighbor.

- Note that points have an ordering. So find the interval: $p_{i} \leq q \leq p_{i+1}$ and $p_{q}=\underset{p_{i}, p_{i+1}}{\operatorname{argmin}}|q-p|$.
- This is binary search!

Let's start in 1D.

- Given a collection of points on the line (x axis), and a query point. Find its nearest neighbor.

- Preprocessing:
- Sort the points in $O(n \log n)$ time.
- Answering a query:
- Binary search to find the interval, and report the closest of the two points. $O(\log n)$ time.
- Perfect method!

In 2D things get complicated.

- Given a collection of points and a query point. Find its nearest neighbor.

- Points do not have a natural ordering. Closest points along each axis can be different.
- However, can extend a similar intuition.

In 2D things get complicated.

- Remember the Voronoi diagram:

- Partition the space into "influence regions."
- Finding the nearest point = finding the region that contains the query point.

Point Location in 2D. Kirkpatrick's Algorithm.

- Achieves optimal $O(\log n)$ query time with $O(n)$ storage and $O(n \log n)$ preprocessing.
- Assume that the planar subdivision is a triangulation. Locating a point inside a set of triangles.

Point Location in 2D. Kirkpatrick's Algorithm.

- Convert Voronoi diagram into a triangulation.

1. Compute the bounding triangle
2. Inside each face, pick a vertex and connect others to it. Possible since faces are convex.

Point Location in 2D. Kirkpatrick's Algorithm.

- Main Idea: Binary search on triangles.
- Create a hierarchy, such that answering a query involves descending in $O(\log n)$ steps.

Point Location in 2D. Kirkpatrick's Algorithm.

- Creating the hierarchy:
- Start with all triangles: T_{0}.
- Delete a constant fraction of vertices, and retriangulate to get T_{1}.
- Make sure that every triangle in T_{1} overlaps a constant number of triangles in T_{0}.

Image by D. Mount

Point Location in 2D. Kirkpatrick's Algorithm.

- By construction the number of triangulations is $O(\log n)$.
- Answering a point location query:
- Traverse the hierarchy from T_{k} to T_{0}.
- Find which triangle in T_{i-1} contains $q: O(1)$ time.
- Will terminate in $O(\log n)$.

Image by D. Mount

Point Location in 2D. Kirkpatrick's Algorithm.

- Main question:
- Can we always find a good set of vertices to delete?
- Main observation:
- Consider set of independent vertices with bounded degree.

- Removing each, creates a hole of size at most d.
- New triangles will intersect at most d old ones.

Point Location in 2D. Kirkpatrick's Algorithm.

- Main question:
- Can we always find a good set of vertices to delete?
- Main lemma:
- Consider set of independent vertices with degree less than d.

- If $d=8$ there are at least $n / 18$ independent vertices whose degree is at most d. Can find them greedily in $O(n)$.
- Follows from the fact that in a planar graph, the average degree is at most 6. Many points of degree under 8.

Point Location in 2D.

- Problems:
- At each step, reducing the size by $1 / 18$, would like $1 / 2$.
- More practical algorithms exist: take CS268!
- In \mathbb{R}^{3} no method is known with $O(n)$ space and $O(\log n)$ query time.
- Complexity of the Voronoi diagram: $O(n)$ in \mathbb{R}^{2}, but grows quickly with dimension: $\Theta\left(n^{\left.n^{\left.\frac{d+1}{2}\right\rfloor}\right)}\right.$.
- Need a more practical algorithm!

Nearest Neighbor in 3D.

- Simple, yet practical methods, perhaps at the expense of worst case running times.
- First simple Idea:

Partition the space into a grid, such that each cell contains a constant number of points.

Voxel Grids in 2D/ 3D

- Partition the space into a grid with a constant number of points per cell.

- Answering a query:

1. Locate the cell containing $q . O(1)$ time.
2. Perform a spiral search of neighboring cells within distance r from q. Update r as you go.

Voxel Grids in 2D/ 3D

- Easy to implement: entire grid is a $2 / 3 \mathrm{D}$ array. Can work if the points are roughly uniformly spaced.

- If points are sampled uniformly in a unit cube, use grid of size: $\sqrt{n / C} \times \sqrt{n / C}$. Expected C points per cell.
- Theorem: For uniform distribution, spiral search finishes in $O(1)$ time. [Bentley, Weide, Yao '8o]
- Bad if non-uniform. Many Empty cells!

Nearest Neighbor in 3D.

- Simple, yet practical methods, perhaps at the expense of worst case running times.
- Second Simple Idea:

Recursively partition the space into 4 cells (2D)/8 cells (3D). Quad/Oct-trees.

Quad trees in 2D/ 3D

- Recursively partition the space into 4 (2D)/8 (3D) cells until each cell has a constant number of points.

- Answering a query:

Cells do not have direct access to neighbors. Need a different method.

Quad trees in 2D/ 3D

- Recursively partition the space into 4 (2D)/8 (3D) cells until each cell has a constant number of points.

- Do a depth first search to find the cell where q is located. If find a leaf, update r.
- Descend into cells that are less than r away from q.

Nearest neighbor search is Quad trees

- Complete Algorithm:

- put the root on the stack, $\mathrm{r}=$
- repeat
- pop the next node T from the stack
- for each child C of T :
- if C is a leaf, examine point(s) in C, update r
- if C intersects with the ball of radius r around q , add C to the stack ordered by distance from q

Nearest neighbor search is Quad trees

- Main problem with Quad Trees: many empty cells.
- If the data is unbalanced, can take a very long time to subdivide

- Need more intelligent splitting rules.

kD-trees

- Two main differences from Quad trees:

1. Split dimension by dimension (not together)
2. During each split, try to make the tree as balanced as possible

Many Strategies. Common: cycle through dimensions and each time split along the median.

kD-trees

- Guaranteed not to have empty cells.
- Median of n points can be found in $O(n)$ time.
- Construction is $O(n \log n)$.
- Query can be done in the same way as in quad-trees.
- Query time depends on the distribution of points.
- In the worst case, have to examine all cells: $O(n)$

Nearest neighbor query with a kD-tree

- Depth first search to find the cell containing q.
- Set $r=d\left(q, p_{1}\right)$.
- Go up the tree inspecting cells closer than r from q, where r is the distance to the closest point so far.

kD-trees

- Query example 1:

Image by S. Renals

kD-trees

- Query example 2:

Image by S. Renals

kD-trees

- Main goals:
- Keep the tree balanced (no empty cells).
- Avoid making skinny rectangles (many neighbors).
- These are conflicting goals. Quad-tree have good aspect ratios, with many empty cells.
- Common modification: instead of cycling through dimensions, pick the one along which points are most spread. \mathcal{P}

kD-trees

- Not guaranteed to work. Many interesting splitting schemes have been proposed.

Friedman et al.

Quad Tree

Arya \& Fu

Songrit Maneewongvatana and David M. Mount It's okay to be skinny, if your friends are fat, 1999

kD-trees

- In practice, kD -trees work remarkably well.
- Can be extended to higher dimensions, but other problems arise: exponential dependence of the query time on the dimension.
- Can be extended for approximate nearest neighbor queries: we're happy with a point that's close to the nearest neighbor. Much more efficient in high D.
- No need to implement the kD-tree from scratch. A very robust implementation: ANN by Arya and Mount:
http://www.cs.umd.edu/~mount/ANN/

