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Explicit (Parametric) Surfaces
“The surface consists of these points: ...”

Splines (treated earlier)
Piecewise-linear surfaces (polygonal meshes)
Most common: triangle meshes

5

{f(u)|u ∈ R2}
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Implicit Surfaces

“The surface consists of all points, which...”

6Isosurface around Zirconocene molecule [Accelrys]

{x|f(x) = 0}
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Implicit vs. Explicit

Different sources
Explicit: 

Image of a function
Easy to enumerate points
Hard to check whether a given point is on the surface

Implicit: 
Kernel of a function
Hard to enumerate points
Easy to check whether a given point is on the surface
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{x|f(x) = 0}

{f(u)|u ∈ R2}
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Iso-Surface of a Density Field

Example:
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f(x) =
∑

i

w(x,xi)− ρ0
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Iso-Surface in a CAT Scan

 
Samples in a regular 
grid
Trilinear within voxels

How can we make 
an isosurface 
explicit?
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f(x) = I(x)− q
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Marching Cubes
(and variants)
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Problem Statement
Given a function        defining an implicit 
surface 

create a triangle mesh that approximates 
the surface S.

11
[James Sharman]

I(x)

S = {x|f(x) = I(x)− q = 0},
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Overview

Marching Cubes
2D case: Marching Squares
3D case: Marching Cubes
Marching Tetrahedra

Extended Marching Cubes
Dual Contouring
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I(x) < q

Marching Squares

Given 
                :     outside
                :     inside

Discretize space
Evaluate        on the grid

13

I(x)

I(x) > q
x
x
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Marching Squares

Given
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Discretize space
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Marching Squares

Given
                :     outside
                :     inside

Discretize space
Evaluate        on the grid
Classify grid points
Classify grid edges
Compute intersections
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Marching Squares

Given
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Discretize space
Evaluate        on the grid
Classify grid points
Classify grid edges
Compute intersections
Connect intersections
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Marching Squares

Given
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Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
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f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1
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Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
Sampled data 

   is trilinear
   is linear along 
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f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

f
f x2 − x1

f(x1 + t(x2 − x1)) = 0
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Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
Sampled data 

   is trilinear
   is linear along 

16

f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

f
f x2 − x1

f(x1) + t(f(x2)− f(x1)) = 0
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Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
Sampled data 

   is trilinear
   is linear along 

16

f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

f
f x2 − x1

t = −f(x1)/(f(x2)− f(x1))
Monday, May 11, 2009



Connecting Intersections

Treat each cell separately
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Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside 
combinations
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Connecting Intersections
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Enumerate all possible inside/outside 
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Ambiguous case
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Ambiguous case

No way to decide without further samples
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Ambiguous case

No way to decide without further samples
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Ambiguous case

No way to decide without further samples
No samples available: Just choose one
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Marching Cubes

Same basic principle in 3D
Lines become surface patches

Up to 4 triangles per voxel
256 different cases, 15 after symmetries

22
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Marching Tetrahedra

Different discretization: Tetrahedra

23[Paul Bourke]
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Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)

23[Paul Bourke]
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Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry

23[Paul Bourke]
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Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry
Up to 2 triangles per tet

23[Paul Bourke]
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Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry
Up to 2 triangles per tet
No ambiguities

23[Paul Bourke]
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Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry
Up to 2 triangles per tet
No ambiguities

Used when input data
discretized as tetrahedra

23[Paul Bourke]
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Implementation

Big lookup tables

24

int edgeTable[256]={
0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0   };

int triTable[256][16] =
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
{1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}};

[Paul Bourke]

Monday, May 11, 2009



Problems & Solutions

25
Monday, May 11, 2009



No Sharp Features

Increasing grid resolution does not help
Normals do not converge
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No Sharp Features

Increasing grid resolution does not help
Normals do not converge

Use normal information to find edges and 
corners
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Using Hermite Data
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Where Do Normals Come From?

Gradient of the function        defining the surface
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f(x)

f(x) = 0

n = −∇f(x)
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Extended Marching Cubes

Sharp features are not well approximated
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Extended Marching Cubes

Computing the intersection

Sometimes underdetermined
When planes are (almost) parallel

Sometimes overdetermined
When too many planes 30
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Underdetermined

Many solutions to
Standard edge case in 3D
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Underdetermined

Many solutions to
Standard edge case in 3D

Choose the solution closest to the center of 
gravity of all intersections
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Overdetermined

Find least-squares solution: minimize 
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Overdetermined

Find least-squares solution: minimize 

Compute the pseudo-inverse       using SVD
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No ambiguous cases

Extended Marching Cubes
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Reintroduce ambiguity:
Use the regular marching cubes connectivity
Compute several points
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In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based
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our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
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edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
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per left), its Marching Cubes contour (upper right), its Extended
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2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
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MC in the standard topological sense: vertices of the SurfaceNets
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data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
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new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
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straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1
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per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
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ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
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In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
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deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.
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changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based
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In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based
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Figure 3: A sphere contoured using the Marching Cubes method
(left) and the SurfaceNets method (right).

The Extended Marching Cubes (EMC) method is a hybrid be-
tween a cube-based method and a dual method. The EMC method
detects the presence of sharp features inside a cube by examining
normals associated with the intersection points on the edges of the
cube. Those cubes whose normals lie inside a user-specified cone
are deemed to be featureless. In this case, the EMC method gen-
erates a polygon(s) using standard MC. For those cubes that do
contain a feature, the method generates a vertex positioned at the
minimizer of the quadratic function

E[x] =!
i

(n
i
· (x− p

i
))2 (1)

where the pairs p
i
,n
i
correspond to the intersections (and unit nor-

mals) of the contour with the edges of the cube. Once this vertex has
been positioned, the method generates a triangle fan to the edges on
the boundary of the cube. Finally, if two adjacent cubes both con-
tain feature vertices, then the pair of triangles generated by the fan
to their common face has its common edge flipped to form a feature
edge. The lower left portion of figure 2 shows a 2D example of the
contour generated by EMC.

2.2 Dual contouring of Hermite data

The main advantage of the EMC method is that it uses Hermite
data and QEFs in positioning the vertices associated with cubes
that contain features. This Hermite approach can generate contours
that contain both sharp vertices and sharp edges. One drawback of
this method is the need to explicitly test for such features and to
then perform some type of special processing in these cases. As
an alternative to the EMC method, we propose the following dual
contouring method for Hermite data:

1. For each cube that exhibits a sign change, generate a vertex
positioned at the minimizer of the quadratic function of equa-
tion 1.

2. For each edge that exhibits a sign change, generate a quad
connecting the minimizing vertices of the four cubes contain-
ing the edge.

This method is an interesting hybrid of the EMC method and
the SurfaceNets method. It uses the EMC method’s feature ver-
tex rule for positioning all vertices of the contour while using the
SurfaceNetsmethod to determine the connectivity of these vertices.
(Note that the SurfaceNets method uses a completely different rule

methods like the ones above since this grid structure is the basis of our fast

CSG operations.

Figure 4: A mechanical part generated by dual contouring Hermite
data on a 643 grid.

for positioning vertices on the contour.) By using QEFs to position
all of the vertices of the contour, this method avoids the need to
explicit test for features. Vertices on the contour are simply posi-
tioned to be consistent with the normals associated with the data.
The lower right portion of figure 2 shows a 2D example of the dual
contour generated by the Hermite data in the upper left portion of
the figure.
Figure 4 shows a 3D example of a mechanical part modeled by

dual contouring Hermite data on a 643 grid. The left image shows
a smooth shaded version of the part while the right image shows
the polygonal mesh produced by dual contouring. The intersection
points and normals for the model were generated from a closed
subdivision surface. A sign field denoting the inside/outside of the
model was computed using a standard scan conversion algorithm as
described in [Foley et al. 1995].

2.3 Representing and minimizing QEFs

At this point, we should make a few comments concerning how we
represent and minimize quadratic error functions. The function E[x]
of equation 1 is constructed from a collection of intersection points
p
i
and normals n

i
. This function E[x] can be expressed as the inner

product (Ax−b)T (Ax−b) where A is a matrix whose rows are the
normals n

i
and b is a vector whose entries are n

i
· p

i
. Typically, the

quadratic function E[x] is expanded into the form

E[x] = xTATAx−2xTAT b+bT b (2)

where the matrix ATA is a symmetric 3×3 matrix, AT b is a column
vector of length three and bT b is a scalar. The advantage of this ex-
pansion is that only the matrices ATA, AT b and bT b need be stored
(10 floats), as opposed to storing the matrices A and b. Further-
more, a minimizing value x̂ for E[x] can be computed by solving
the normal equations ATAx̂= AT b.
One drawback of this representation is that it is numerically un-

stable. For example, consider computing the value of E[x] in float-
ing point arithmetic when the intersection points and normals used
in constructing E[x] are sampled from a flat area. For a grid of size
2563 (as in figure 1), the magnitude of bT b can be on the order of
106. Since floats are only accurate to six decimal digits, if E[x] is
evaluated at points on the original flat area (where E[x] should be
zero), the resulting value has an error on the order of 1.
One possible solution to this problem is to use double precision

numbers instead of floats in representing ATA, AT b and bT b. Us-

Figure 3: A sphere contoured using the Marching Cubes method
(left) and the SurfaceNets method (right).

The Extended Marching Cubes (EMC) method is a hybrid be-
tween a cube-based method and a dual method. The EMC method
detects the presence of sharp features inside a cube by examining
normals associated with the intersection points on the edges of the
cube. Those cubes whose normals lie inside a user-specified cone
are deemed to be featureless. In this case, the EMC method gen-
erates a polygon(s) using standard MC. For those cubes that do
contain a feature, the method generates a vertex positioned at the
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the boundary of the cube. Finally, if two adjacent cubes both con-
tain feature vertices, then the pair of triangles generated by the fan
to their common face has its common edge flipped to form a feature
edge. The lower left portion of figure 2 shows a 2D example of the
contour generated by EMC.

2.2 Dual contouring of Hermite data

The main advantage of the EMC method is that it uses Hermite
data and QEFs in positioning the vertices associated with cubes
that contain features. This Hermite approach can generate contours
that contain both sharp vertices and sharp edges. One drawback of
this method is the need to explicitly test for such features and to
then perform some type of special processing in these cases. As
an alternative to the EMC method, we propose the following dual
contouring method for Hermite data:

1. For each cube that exhibits a sign change, generate a vertex
positioned at the minimizer of the quadratic function of equa-
tion 1.

2. For each edge that exhibits a sign change, generate a quad
connecting the minimizing vertices of the four cubes contain-
ing the edge.

This method is an interesting hybrid of the EMC method and
the SurfaceNets method. It uses the EMC method’s feature ver-
tex rule for positioning all vertices of the contour while using the
SurfaceNetsmethod to determine the connectivity of these vertices.
(Note that the SurfaceNets method uses a completely different rule
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for positioning vertices on the contour.) By using QEFs to position
all of the vertices of the contour, this method avoids the need to
explicit test for features. Vertices on the contour are simply posi-
tioned to be consistent with the normals associated with the data.
The lower right portion of figure 2 shows a 2D example of the dual
contour generated by the Hermite data in the upper left portion of
the figure.
Figure 4 shows a 3D example of a mechanical part modeled by

dual contouring Hermite data on a 643 grid. The left image shows
a smooth shaded version of the part while the right image shows
the polygonal mesh produced by dual contouring. The intersection
points and normals for the model were generated from a closed
subdivision surface. A sign field denoting the inside/outside of the
model was computed using a standard scan conversion algorithm as
described in [Foley et al. 1995].

2.3 Representing and minimizing QEFs

At this point, we should make a few comments concerning how we
represent and minimize quadratic error functions. The function E[x]
of equation 1 is constructed from a collection of intersection points
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quadratic function E[x] is expanded into the form

E[x] = xTATAx−2xTAT b+bT b (2)

where the matrix ATA is a symmetric 3×3 matrix, AT b is a column
vector of length three and bT b is a scalar. The advantage of this ex-
pansion is that only the matrices ATA, AT b and bT b need be stored
(10 floats), as opposed to storing the matrices A and b. Further-
more, a minimizing value x̂ for E[x] can be computed by solving
the normal equations ATAx̂= AT b.
One drawback of this representation is that it is numerically un-

stable. For example, consider computing the value of E[x] in float-
ing point arithmetic when the intersection points and normals used
in constructing E[x] are sampled from a flat area. For a grid of size
2563 (as in figure 1), the magnitude of bT b can be on the order of
106. Since floats are only accurate to six decimal digits, if E[x] is
evaluated at points on the original flat area (where E[x] should be
zero), the resulting value has an error on the order of 1.
One possible solution to this problem is to use double precision

numbers instead of floats in representing ATA, AT b and bT b. Us-
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Isotopic Meshing

Check the condition using interval arithmetic
Good for analytic surfaces
Expensive for sampled volume data

Refine hierarchically: Use quadtree/octree
Less painful: Use tetrahedral subdivision

45[Plantinga, Vegter 2007]

Monday, May 11, 2009



f(x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 − 5z2 + 10

Isotopic Meshing
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Marching Cubes Variants

49

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1
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In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1
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Topological Guarantees

Enforced by subdivision
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