
CS164: Surface Reconstruction,
Marching Cubes

Leonidas Guibas
Computer Science Dept.
Stanford University

1

Monday, May 11, 2009

Overview

Surface Representations
Explicit Surfaces
Implicit Surfaces

Marching Cubes
Hermite Data/Extended Marching Cubes
Dual Contouring
Topological Guarantees

2
Monday, May 11, 2009

Surface Representations

3
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples

Measurements

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

W
ed
ne
sd
ay

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Define, e.g. MLS surface

W
ed
ne
sd
ay

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Raytracing

Define, e.g. MLS surface

W
ed
ne
sd
ay

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

W
ed
ne
sd
ay

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

W
ed
ne
sd
ay

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

W
ed
ne
sd
ay

Easy

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

W
ed
ne
sd
ay

Easy

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

W
ed
ne
sd
ay

Easy

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

Today

W
ed
ne
sd
ay

Easy

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

Today

W
ed
ne
sd
ay

Easy

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

Today

W
ed
ne
sd
ay

Easy

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

4
Monday, May 11, 2009

Explicit (Parametric) Surfaces
“The surface consists of these points: ...”

Splines (treated earlier)
Piecewise-linear surfaces (polygonal meshes)
Most common: triangle meshes

5

{f(u)|u ∈ R2}

Monday, May 11, 2009

Implicit Surfaces

“The surface consists of all points, which...”

6Isosurface around Zirconocene molecule [Accelrys]

{x|f(x) = 0}

Monday, May 11, 2009

Implicit vs. Explicit

Different sources
Explicit:

Image of a function
Easy to enumerate points
Hard to check whether a given point is on the surface

Implicit:
Kernel of a function
Hard to enumerate points
Easy to check whether a given point is on the surface

7

{x|f(x) = 0}

{f(u)|u ∈ R2}

Monday, May 11, 2009

Iso-Surface of a Density Field

Example:

8

f(x) =
∑

i

w(x,xi)− ρ0

Monday, May 11, 2009

Iso-Surface of a Density Field

Example:

8

f(x) =
∑

i

w(x,xi)− ρ0

Monday, May 11, 2009

Iso-Surface in a CAT Scan

Samples in a regular
grid
Trilinear within voxels

How can we make
an isosurface
explicit?

9

f(x) = I(x)− q

Monday, May 11, 2009

Marching Cubes
(and variants)

10
Monday, May 11, 2009

Problem Statement
Given a function defining an implicit
surface

create a triangle mesh that approximates
the surface S.

11
[James Sharman]

I(x)

S = {x|f(x) = I(x)− q = 0},

Monday, May 11, 2009

Overview

Marching Cubes
2D case: Marching Squares
3D case: Marching Cubes
Marching Tetrahedra

Extended Marching Cubes
Dual Contouring

12
Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid

13

I(x)

I(x) > q
x
x

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid

13

I(x)

I(x) > q
x
x

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space

13

I(x)

I(x) > q
x
x

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid

13

I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points

14

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points
Classify grid edges

14

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points
Classify grid edges
Compute intersections

14

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points
Classify grid edges
Compute intersections
Connect intersections

14

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points
Classify grid edges
Compute intersections
Connect intersections

15

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root

16

f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

Monday, May 11, 2009

Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
Sampled data

 is trilinear
 is linear along

16

f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

f
f x2 − x1

f(x1 + t(x2 − x1)) = 0
Monday, May 11, 2009

Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
Sampled data

 is trilinear
 is linear along

16

f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

f
f x2 − x1

f(x1) + t(f(x2)− f(x1)) = 0
Monday, May 11, 2009

Computing Intersections

Edges with a sign switch contain intersections

Nonlinear equation, use raycasting to find root
Sampled data

 is trilinear
 is linear along

16

f(x1) < 0 and f(x2) ≥ 0
⇒ f(x1 + t(x2 − x1)) = 0 for some 0 < t ≤ 1

f
f x2 − x1

t = −f(x1)/(f(x2)− f(x1))
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately

17
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations

17
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections

18
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections

18
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations

19
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations

19
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations

19
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations

19
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations

19
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations
Connect intersections

20
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations
Connect intersections

20
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations
Connect intersections

20
Monday, May 11, 2009

Connecting Intersections

Treat each cell separately
Enumerate all possible inside/outside
combinations
Group those leading to the same intersections
Group those equivalent after rotations
Connect intersections

20

?

Monday, May 11, 2009

Ambiguous case

21
Monday, May 11, 2009

Ambiguous case

21
Monday, May 11, 2009

Ambiguous case

21
Monday, May 11, 2009

Ambiguous case

No way to decide without further samples

21
Monday, May 11, 2009

Ambiguous case

No way to decide without further samples

21
Monday, May 11, 2009

Ambiguous case

No way to decide without further samples

21
Monday, May 11, 2009

Ambiguous case

No way to decide without further samples
No samples available: Just choose one

21
Monday, May 11, 2009

Marching Cubes

Same basic principle in 3D
Lines become surface patches

Up to 4 triangles per voxel
256 different cases, 15 after symmetries

22
Monday, May 11, 2009

Marching Tetrahedra

Different discretization: Tetrahedra

23[Paul Bourke]

Monday, May 11, 2009

Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)

23[Paul Bourke]

Monday, May 11, 2009

Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry

23[Paul Bourke]

Monday, May 11, 2009

Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry
Up to 2 triangles per tet

23[Paul Bourke]

Monday, May 11, 2009

Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry
Up to 2 triangles per tet
No ambiguities

23[Paul Bourke]

Monday, May 11, 2009

Marching Tetrahedra

Different discretization: Tetrahedra
6 tetrahedra per voxel (if we start from cubes)
16 cases, 8 after symmetry
Up to 2 triangles per tet
No ambiguities

Used when input data
discretized as tetrahedra

23[Paul Bourke]

Monday, May 11, 2009

Implementation

Big lookup tables

24

int edgeTable[256]={
0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 };

int triTable[256][16] =
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
{1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}};

[Paul Bourke]

Monday, May 11, 2009

Problems & Solutions

25
Monday, May 11, 2009

No Sharp Features

Increasing grid resolution does not help
Normals do not converge

26

Kobbelt et al. 2001

Monday, May 11, 2009

No Sharp Features

Increasing grid resolution does not help
Normals do not converge

Use normal information to find edges and
corners

26

Kobbelt et al. 2001

Monday, May 11, 2009

Using Hermite Data

27
Monday, May 11, 2009

Where Do Normals Come From?

Gradient of the function defining the surface

28

f(x)

f(x) = 0

n = −∇f(x)

Monday, May 11, 2009

Extended Marching Cubes

Sharp features are not well approximated

29
Monday, May 11, 2009

Extended Marching Cubes

Sharp features are not well approximated
Use normal information

29
Monday, May 11, 2009

Extended Marching Cubes

Sharp features are not well approximated
Use normal information
Special treatment for corners and edges

29
Monday, May 11, 2009

Extended Marching Cubes

Sharp features are not well approximated
Use normal information
Special treatment for corners and edges

Corner/edge if large angle between normals

29
Monday, May 11, 2009

Extended Marching Cubes

Sharp features are not well approximated
Use normal information
Special treatment for corners and edges

Corner/edge if large angle between normals
Add a vertex at the intersection of tangent planes

29
Monday, May 11, 2009

Extended Marching Cubes

Sharp features are not well approximated
Use normal information
Special treatment for corners and edges

Corner/edge if large angle between normals
Add a vertex at the intersection of tangent planes

29
Monday, May 11, 2009

Extended Marching Cubes

Computing the intersection

Sometimes underdetermined
When planes are (almost) parallel

Sometimes overdetermined
When too many planes 30

nix = nipi

ni

pi

Monday, May 11, 2009

Extended Marching Cubes

Computing the intersection

Sometimes underdetermined
When planes are (almost) parallel

Sometimes overdetermined
When too many planes 30

ni

pi

nT

1
...

nT
k

x =

nT

1 p1
...

nT
k pk

Monday, May 11, 2009

Extended Marching Cubes

Computing the intersection

Sometimes underdetermined
When planes are (almost) parallel

Sometimes overdetermined
When too many planes 30

ni

piAx =

nT

1
...

nT
k

x =

nT

1 p1
...

nT
k pk

 = b

Monday, May 11, 2009

Extended Marching Cubes

Computing the intersection

Sometimes underdetermined
When planes are (almost) parallel

30

ni

piAx =

nT

1
...

nT
k

x =

nT

1 p1
...

nT
k pk

 = b

Monday, May 11, 2009

Extended Marching Cubes

Computing the intersection

Sometimes underdetermined
When planes are (almost) parallel

Sometimes overdetermined
When too many planes 30

ni

piAx =

nT

1
...

nT
k

x =

nT

1 p1
...

nT
k pk

 = b

Monday, May 11, 2009

Underdetermined

Many solutions to
Standard edge case in 3D

31

Ax = b

Monday, May 11, 2009

Underdetermined

Many solutions to
Standard edge case in 3D

Choose the solution closest to the center of
gravity of all intersections

31

Ax = b

Monday, May 11, 2009

Overdetermined

Find least-squares solution: minimize

32

‖Ax− b‖2

Monday, May 11, 2009

Overdetermined

Find least-squares solution: minimize

Compute the pseudo-inverse using SVD

32

‖Ax− b‖2

A+

x = A+b = A+[nT
1 p1 . . .nT

k pk]T

Monday, May 11, 2009

Overdetermined

Find least-squares solution: minimize

Compute the pseudo-inverse using SVD

Solution for under- and over-determined system

32

‖Ax− b‖2

A+

x = A+b = A+[nT
1 p1 . . .nT

k pk]T

x = A+([. . .ni(pi −
∑

i

pi/k) . . .]) +
∑

i

pi/k

Ay = [. . .nT
i (pi −

∑

i

pi/k) . . .]

Monday, May 11, 2009

Overdetermined

Find least-squares solution: minimize

Compute the pseudo-inverse using SVD

Solution for under- and over-determined system

32

‖Ax− b‖2

A+

x = A+b = A+[nT
1 p1 . . .nT

k pk]T

x = A+([. . .ni(pi −
∑

i

pi/k) . . .]) +
∑

i

pi/k

Ay = [. . .nT
i (pi −

∑

i

pi/k) . . .]

Monday, May 11, 2009

No ambiguous cases

Extended Marching Cubes

33
Monday, May 11, 2009

No ambiguous cases

Extended Marching Cubes

33
Monday, May 11, 2009

No ambiguous cases

Extended Marching Cubes

33
Monday, May 11, 2009

Reintroduce ambiguity:
Use the regular marching cubes connectivity
Compute several points

Extended Marching Cubes

34
Monday, May 11, 2009

Reintroduce ambiguity:
Use the regular marching cubes connectivity
Compute several points

Extended Marching Cubes

34
Monday, May 11, 2009

Reintroduce ambiguity:
Use the regular marching cubes connectivity
Compute several points

Extended Marching Cubes

34
Monday, May 11, 2009

Comparison

35

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

[Ju et al. 2002]

Input data Marching
Cubes

Extended
Marching

Cubes

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

Monday, May 11, 2009

Comparison

35

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

[Ju et al. 2002]

Input data Marching
Cubes

Extended
Marching

Cubes

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

Monday, May 11, 2009

Dual Methods

Marching Cubes (Primal)
1 point per edge
Connecting primitives (triangles) per voxel

Dual Contouring (Dual)
1 point per voxel
Connecting primitives (quads) per edge

36
Monday, May 11, 2009

Dual Methods

Marching Cubes (Primal)
1 point per edge
Connecting primitives (triangles) per voxel

Dual Contouring (Dual)
1 point per voxel
Connecting primitives (quads) per edge

36
Monday, May 11, 2009

Dual Methods

Marching Cubes (Primal)
1 point per edge
Connecting primitives (triangles) per voxel

Dual Contouring (Dual)
1 point per voxel
Connecting primitives (quads) per edge

36
Monday, May 11, 2009

Comparison

37

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

[Ju et al. 2002]

Input data Marching
Cubes

Dual
Contouring

Extended
Marching
Cubes

Monday, May 11, 2009

Comparison

37

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

[Ju et al. 2002]

Input data Marching
Cubes

Dual
Contouring

Extended
Marching
Cubes

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid

38

I(x)

I(x) > q
x
x

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid

38

I(x)

I(x) > q
x
x

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space

38

I(x)

I(x) > q
x
x

Monday, May 11, 2009

I(x) < q

Marching Squares

Given
 : outside
 : inside

Discretize space
Evaluate on the grid

38

I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

2D Dual Contouring

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points

39

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

2D Dual Contouring

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points
Classify grid edges

39

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

2D Dual Contouring

Given
 : outside
 : inside

Discretize space
Evaluate on the grid
Classify grid points
Classify grid edges
Compute intersections

39

I(x) < q
I(x)

I(x) > q
x
x

f(x)

Monday, May 11, 2009

2D Dual Contouring

39

Compute intersections

Monday, May 11, 2009

2D Dual Contouring

Compute intersections

40
Monday, May 11, 2009

2D Dual Contouring

Compute intersections
Compute normals

40
Monday, May 11, 2009

2D Dual Contouring

Compute intersections
Compute normals
Compute dual points

for each voxel with sign
change

40
Monday, May 11, 2009

2D Dual Contouring

Compute intersections
Compute normals
Compute dual points

for each voxel with sign
change

Connect dual points
across each red edge

40
Monday, May 11, 2009

2D Dual Contouring

Compute intersections
Compute normals
Compute dual points

for each voxel with sign
change

Connect dual points
across each red edge

We could reintroduce
ambiguity

40
Monday, May 11, 2009

Dual Contouring

No ambiguities
Does not interpolate known surface points/
normals
No special cases for features
No lookup tables
Some trickiness in matrix pseudo-inverse
Naturally produces quads, not triangles (in 3D)

What would dual marching tetrahedra produce?

41
Monday, May 11, 2009

Mesh quality

Dual contouring produces higher-quality
meshes

Flat surfaces never have bad triangles/quads
Control over placement of samples

42

Figure 3: A sphere contoured using the Marching Cubes method
(left) and the SurfaceNets method (right).

The Extended Marching Cubes (EMC) method is a hybrid be-
tween a cube-based method and a dual method. The EMC method
detects the presence of sharp features inside a cube by examining
normals associated with the intersection points on the edges of the
cube. Those cubes whose normals lie inside a user-specified cone
are deemed to be featureless. In this case, the EMC method gen-
erates a polygon(s) using standard MC. For those cubes that do
contain a feature, the method generates a vertex positioned at the
minimizer of the quadratic function

E[x] =!
i

(n
i
· (x− p

i
))2 (1)

where the pairs p
i
,n
i
correspond to the intersections (and unit nor-

mals) of the contour with the edges of the cube. Once this vertex has
been positioned, the method generates a triangle fan to the edges on
the boundary of the cube. Finally, if two adjacent cubes both con-
tain feature vertices, then the pair of triangles generated by the fan
to their common face has its common edge flipped to form a feature
edge. The lower left portion of figure 2 shows a 2D example of the
contour generated by EMC.

2.2 Dual contouring of Hermite data

The main advantage of the EMC method is that it uses Hermite
data and QEFs in positioning the vertices associated with cubes
that contain features. This Hermite approach can generate contours
that contain both sharp vertices and sharp edges. One drawback of
this method is the need to explicitly test for such features and to
then perform some type of special processing in these cases. As
an alternative to the EMC method, we propose the following dual
contouring method for Hermite data:

1. For each cube that exhibits a sign change, generate a vertex
positioned at the minimizer of the quadratic function of equa-
tion 1.

2. For each edge that exhibits a sign change, generate a quad
connecting the minimizing vertices of the four cubes contain-
ing the edge.

This method is an interesting hybrid of the EMC method and
the SurfaceNets method. It uses the EMC method’s feature ver-
tex rule for positioning all vertices of the contour while using the
SurfaceNetsmethod to determine the connectivity of these vertices.
(Note that the SurfaceNets method uses a completely different rule

methods like the ones above since this grid structure is the basis of our fast

CSG operations.

Figure 4: A mechanical part generated by dual contouring Hermite
data on a 643 grid.

for positioning vertices on the contour.) By using QEFs to position
all of the vertices of the contour, this method avoids the need to
explicit test for features. Vertices on the contour are simply posi-
tioned to be consistent with the normals associated with the data.
The lower right portion of figure 2 shows a 2D example of the dual
contour generated by the Hermite data in the upper left portion of
the figure.
Figure 4 shows a 3D example of a mechanical part modeled by

dual contouring Hermite data on a 643 grid. The left image shows
a smooth shaded version of the part while the right image shows
the polygonal mesh produced by dual contouring. The intersection
points and normals for the model were generated from a closed
subdivision surface. A sign field denoting the inside/outside of the
model was computed using a standard scan conversion algorithm as
described in [Foley et al. 1995].

2.3 Representing and minimizing QEFs

At this point, we should make a few comments concerning how we
represent and minimize quadratic error functions. The function E[x]
of equation 1 is constructed from a collection of intersection points
p
i
and normals n

i
. This function E[x] can be expressed as the inner

product (Ax−b)T (Ax−b) where A is a matrix whose rows are the
normals n

i
and b is a vector whose entries are n

i
· p

i
. Typically, the

quadratic function E[x] is expanded into the form

E[x] = xTATAx−2xTAT b+bT b (2)

where the matrix ATA is a symmetric 3×3 matrix, AT b is a column
vector of length three and bT b is a scalar. The advantage of this ex-
pansion is that only the matrices ATA, AT b and bT b need be stored
(10 floats), as opposed to storing the matrices A and b. Further-
more, a minimizing value x̂ for E[x] can be computed by solving
the normal equations ATAx̂= AT b.
One drawback of this representation is that it is numerically un-

stable. For example, consider computing the value of E[x] in float-
ing point arithmetic when the intersection points and normals used
in constructing E[x] are sampled from a flat area. For a grid of size
2563 (as in figure 1), the magnitude of bT b can be on the order of
106. Since floats are only accurate to six decimal digits, if E[x] is
evaluated at points on the original flat area (where E[x] should be
zero), the resulting value has an error on the order of 1.
One possible solution to this problem is to use double precision

numbers instead of floats in representing ATA, AT b and bT b. Us-

Figure 3: A sphere contoured using the Marching Cubes method
(left) and the SurfaceNets method (right).

The Extended Marching Cubes (EMC) method is a hybrid be-
tween a cube-based method and a dual method. The EMC method
detects the presence of sharp features inside a cube by examining
normals associated with the intersection points on the edges of the
cube. Those cubes whose normals lie inside a user-specified cone
are deemed to be featureless. In this case, the EMC method gen-
erates a polygon(s) using standard MC. For those cubes that do
contain a feature, the method generates a vertex positioned at the
minimizer of the quadratic function

E[x] =!
i

(n
i
· (x− p

i
))2 (1)

where the pairs p
i
,n
i
correspond to the intersections (and unit nor-

mals) of the contour with the edges of the cube. Once this vertex has
been positioned, the method generates a triangle fan to the edges on
the boundary of the cube. Finally, if two adjacent cubes both con-
tain feature vertices, then the pair of triangles generated by the fan
to their common face has its common edge flipped to form a feature
edge. The lower left portion of figure 2 shows a 2D example of the
contour generated by EMC.

2.2 Dual contouring of Hermite data

The main advantage of the EMC method is that it uses Hermite
data and QEFs in positioning the vertices associated with cubes
that contain features. This Hermite approach can generate contours
that contain both sharp vertices and sharp edges. One drawback of
this method is the need to explicitly test for such features and to
then perform some type of special processing in these cases. As
an alternative to the EMC method, we propose the following dual
contouring method for Hermite data:

1. For each cube that exhibits a sign change, generate a vertex
positioned at the minimizer of the quadratic function of equa-
tion 1.

2. For each edge that exhibits a sign change, generate a quad
connecting the minimizing vertices of the four cubes contain-
ing the edge.

This method is an interesting hybrid of the EMC method and
the SurfaceNets method. It uses the EMC method’s feature ver-
tex rule for positioning all vertices of the contour while using the
SurfaceNetsmethod to determine the connectivity of these vertices.
(Note that the SurfaceNets method uses a completely different rule

methods like the ones above since this grid structure is the basis of our fast

CSG operations.

Figure 4: A mechanical part generated by dual contouring Hermite
data on a 643 grid.

for positioning vertices on the contour.) By using QEFs to position
all of the vertices of the contour, this method avoids the need to
explicit test for features. Vertices on the contour are simply posi-
tioned to be consistent with the normals associated with the data.
The lower right portion of figure 2 shows a 2D example of the dual
contour generated by the Hermite data in the upper left portion of
the figure.
Figure 4 shows a 3D example of a mechanical part modeled by

dual contouring Hermite data on a 643 grid. The left image shows
a smooth shaded version of the part while the right image shows
the polygonal mesh produced by dual contouring. The intersection
points and normals for the model were generated from a closed
subdivision surface. A sign field denoting the inside/outside of the
model was computed using a standard scan conversion algorithm as
described in [Foley et al. 1995].

2.3 Representing and minimizing QEFs

At this point, we should make a few comments concerning how we
represent and minimize quadratic error functions. The function E[x]
of equation 1 is constructed from a collection of intersection points
p
i
and normals n

i
. This function E[x] can be expressed as the inner

product (Ax−b)T (Ax−b) where A is a matrix whose rows are the
normals n

i
and b is a vector whose entries are n

i
· p

i
. Typically, the

quadratic function E[x] is expanded into the form

E[x] = xTATAx−2xTAT b+bT b (2)

where the matrix ATA is a symmetric 3×3 matrix, AT b is a column
vector of length three and bT b is a scalar. The advantage of this ex-
pansion is that only the matrices ATA, AT b and bT b need be stored
(10 floats), as opposed to storing the matrices A and b. Further-
more, a minimizing value x̂ for E[x] can be computed by solving
the normal equations ATAx̂= AT b.
One drawback of this representation is that it is numerically un-

stable. For example, consider computing the value of E[x] in float-
ing point arithmetic when the intersection points and normals used
in constructing E[x] are sampled from a flat area. For a grid of size
2563 (as in figure 1), the magnitude of bT b can be on the order of
106. Since floats are only accurate to six decimal digits, if E[x] is
evaluated at points on the original flat area (where E[x] should be
zero), the resulting value has an error on the order of 1.
One possible solution to this problem is to use double precision

numbers instead of floats in representing ATA, AT b and bT b. Us-

[Ju et al. 2002]
Monday, May 11, 2009

No Topological Guarantees

Discrete Sampling: Expect Resolution Issues

43

[Paul Bourke]

Monday, May 11, 2009

Isotopic Meshing

Reduce mesh size until all features resolved
Within each voxel that contains the surface:

Normals in a -cone

44

∇f(x) ·∇f(y) > 0 ∀x,y

Monday, May 11, 2009

Isotopic Meshing

Reduce mesh size until all features resolved
Within each voxel that contains the surface:

Normals in a -cone

44

∇f(x) ·∇f(y) > 0 ∀x,y

Monday, May 11, 2009

Isotopic Meshing

Reduce mesh size until all features resolved
Within each voxel that contains the surface:

Normals in a -cone

44

∇f(x) ·∇f(y) > 0 ∀x,y

Monday, May 11, 2009

Isotopic Meshing

Reduce mesh size until all features resolved
Within each voxel that contains the surface:

Normals in a -cone

44

∇f(x) ·∇f(y) > 0 ∀x,y

Monday, May 11, 2009

Isotopic Meshing

Reduce mesh size until all features resolved
Within each voxel that contains the surface:

Normals in a -cone

44

∇f(x) ·∇f(y) > 0 ∀x,y

Monday, May 11, 2009

Isotopic Meshing

Reduce mesh size until all features resolved
Within each voxel that contains the surface:

Normals in a -cone

44

π
2

∇f(x) ·∇f(y) > 0 ∀x,y

Monday, May 11, 2009

Isotopic Meshing

Check the condition using interval arithmetic
Good for analytic surfaces
Expensive for sampled volume data

Refine hierarchically: Use quadtree/octree
Less painful: Use tetrahedral subdivision

45[Plantinga, Vegter 2007]

Monday, May 11, 2009

f(x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 − 5z2 + 10

Isotopic Meshing

46

[Plantinga, Vegter 2007]

Monday, May 11, 2009

Summary

47
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

48
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

48
Monday, May 11, 2009

Implicit Surface

Explicit Surface

Surface Samples

Volume Samples
S

am
pling, e.g. LD

C

Tr
ia

ng
ul

at
e

Marching Cubes

Signed Distance Transform

Interpolate

S
am

pl
e/

E
va

lu
at

e

Raytracing

Define, e.g. MLS surface

Measurements,
Simulation

MeasurementsAnalytic Description,
Simulation

Modeling

48
Monday, May 11, 2009

Marching Cubes Variants

49

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

[Ju et al. 2002]

Marching
Cubes

Dual
Contouring

Extended
Marching

Cubes

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these
deficiencies. In particular, we focused on adapting three pieces of
recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curved or sharp edges on the contour.

• Third, we use these normals to define a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then
used in an octree-based polyhedral simplification method sim-
ilar to that of [Lindstrom 2000]. Our method uses the added
information specified by the signs attached to the corners of
cubes in the octree to preserve the topology of this contour
during simplification.

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging
edges that exhibit sign changes. (See the upper left portion of figure
2 for an example). Interior nodes in the octree contain QEFs used
during simplification. This representation can accurately approxi-
mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG
operations and simplification of the resulting shapes.

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite
data that avoids the need to explicitly identify and process features
as done in the Extended Marching Cubes method. After extend-
ing this contouring method to the case of multiple materials, we
demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of
our contouring method for simplified octrees that imposes no con-
straints on the octree (such as being a restricted octree) and requires
no crack patching. We conclude with a simple new test for preserv-
ing the topology of both the contour and its textured regions during
simplification.

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring
method that is suitable for octrees, we first consider various meth-
ods for contouring signed uniform grids. The upper left portion of
figure 2 shows a typical example of a signed uniform grid. Those
edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-
plicit definition of the contour or by scan converting a closed polyg-
onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that intersects a partic-
ular cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper
right portion of figure 2 shows a 2D example of the MC contour
generated from the signed grid to its left. The left-hand side of fig-
ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2− y2− z2. This contour consists
of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand
side of figure 3 shows an example of the same sphere contoured
using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

respect to the underlying fine grid. We focus our attention on grid-based

Lookup tables
No sharp
features

Hybrid method
Edges/
Corners are
special cases
Need feature
threshold

Dual method
No special
cases
No feature
threshold

Monday, May 11, 2009

Topological Guarantees

Enforced by subdivision
Best for analytic surfaces
Hierarchical refinement

50

[Plantinga, Vegter 2007]

Monday, May 11, 2009

Literature
W. Lorensen, H. Cline: “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm", SIGGRAPH '87

J. Bloomenthal: “Polygonisation of Implicit Surfaces”. Computer-Aided Geometric
Design 5(4), 1988

Foley, van Dam, Feiner, Hughes: “Computer Graphics: Principles and Practice”,
Addison Wesley, 1995

S. Gibson: “Using distance maps for accurate surface reconstruction in
sampled volumes”, IEEE Volume Visualization Symposium, 1998

L. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel: ”Feature Sensitive Surface
Extraction from Volume Data”, SIGGRAPH ‘01

T. Ju, F. Losasso, S. Schaeffer, J. Warren: “Dual Contouring of Hermite Data”,
SIGGRAPH ’02

S. Plantinga and G. Vegter: “Isotopic Meshing of Implicit Surfaces”, The Visual
Computer 23, 2007

James Sharman: http://www.exaflop.org/docs/marchcubes/

Paul Bourke: http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/ 51
Monday, May 11, 2009

http://www.exaflop.org/docs/marchcubes/
http://www.exaflop.org/docs/marchcubes/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/

