CS164: Surface Reconstruction, Marching Cubes

Leonidas Guibas Computer Science Dept. Stanford University

1

Overview

- Surface Representations
 - Explicit Surfaces
 - Implicit Surfaces
- Marching Cubes
 - Hermite Data/Extended Marching Cubes
 - Dual Contouring
 - Topological Guarantees

Surface Representations

Explicit (Parametric) Surfaces

- "The surface consists of these points: ..." $\{f(\mathbf{u})|\mathbf{u}\in\mathbb{R}^2\}$
- Splines (treated earlier)
- Piecewise-linear surfaces (polygonal meshes)
- Most common: triangle meshes

Implicit Surfaces

• "The surface consists of all points, which..." $\{ \mathbf{x} | f(\mathbf{x}) = 0 \}$

Isosurface around Zirconocene molecule [Accelrys]

Implicit vs. Explicit

- Different sources
- Explicit: $\{f(\mathbf{u})|\mathbf{u} \in \mathbb{R}^2\}$
 - Image of a function
 - Easy to enumerate points
 - Hard to check whether a given point is on the surface
- Implicit: $\{\mathbf{x}|f(\mathbf{x})=0\}$
 - Kernel of a function
 - Hard to enumerate points
 - Easy to check whether a given point is on the surface

• Example: $f(\mathbf{x}) = \sum_{i} w(\mathbf{x}, \mathbf{x}_{i}) - \rho_{0}$

• Example: $f(\mathbf{x}) = \sum_{i} w(\mathbf{x}, \mathbf{x}_{i}) - \rho_{0}$

Iso-Surface in a CAT Scan

•
$$f(\mathbf{x}) = I(\mathbf{x}) - q$$

- Samples in a regular grid
- Trilinear within voxels
- How can we make an isosurface explicit?

Marching Cubes (and variants)

Problem Statement

Given a function $I(\mathbf{x})$ defining an implicit surface

$$\mathcal{S} = \{ \mathbf{x} | f(\mathbf{x}) = I(\mathbf{x}) - q = 0 \},\$$

create a triangle mesh that approximates the surface S.

Overview

- Marching Cubes
 - 2D case: Marching Squares
 - 3D case: Marching Cubes
 - Marching Tetrahedra
- Extended Marching Cubes
- Dual Contouring

- Given I(x)
 I(x) < q : x outside
 I(x) > q : x inside
 Discretize space
- Evaluate on the grid

- Given I(x)
 I(x) < q : x outside
 I(x) > q : x inside
 Discretize space
- Evaluate on the grid

Given I(x)
I(x) < q : x outside
I(x) > q : x inside
Discretize space

ł			
l			

- Given I(x)
 I(x) < q : x outside
 I(x) > q : x inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges

Marching Squares

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections

Marching Squares

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections
- Connect intersections

Marching Squares

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $\bullet I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections
- Connect intersections

Edges with a sign switch contain intersections

 $f(\mathbf{x}_1) < 0 \text{ and } f(\mathbf{x}_2) \ge 0$ $\Rightarrow \quad f(\mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)) = 0 \text{ for some } 0 < t \le 1$

Nonlinear equation, use raycasting to find root

Edges with a sign switch contain intersections

 $f(\mathbf{x}_1) < 0 \text{ and } f(\mathbf{x}_2) \ge 0$ $\Rightarrow \quad f(\mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)) = 0 \text{ for some } 0 < t \le 1$

- Nonlinear equation, use raycasting to find root
- Sampled data
 - f is trilinear
 - f is linear along $\mathbf{x}_2 \mathbf{x}_1$

$$f(\mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)) = 0$$

Edges with a sign switch contain intersections

 $f(\mathbf{x}_1) < 0 \text{ and } f(\mathbf{x}_2) \ge 0$ $\Rightarrow \quad f(\mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)) = 0 \text{ for some } 0 < t \le 1$

- Nonlinear equation, use raycasting to find root
- Sampled data
 - f is trilinear
 - f is linear along $\mathbf{x}_2 \mathbf{x}_1$

 $f(\mathbf{x}_1) + t(f(\mathbf{x}_2) - f(\mathbf{x}_1)) = 0$

Edges with a sign switch contain intersections

 $f(\mathbf{x}_1) < 0 \text{ and } f(\mathbf{x}_2) \ge 0$ $\Rightarrow \quad f(\mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)) = 0 \text{ for some } 0 < t \le 1$

- Nonlinear equation, use raycasting to find root
- Sampled data
 - f is trilinear
 - f is linear along $\mathbf{x}_2 \mathbf{x}_1$

$$t = -f(\mathbf{x}_1)/(f(\mathbf{x}_2) - f(\mathbf{x}_1))$$

Treat each cell separately

- Treat each cell separately
- Enumerate all possible inside/outside combinations

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

No way to decide without further samples

No way to decide without further samples

No way to decide without further samples

No way to decide without further samples
No samples available: Just choose one

Marching Cubes

- Same basic principle in 3D
- Lines become surface patches
 - Up to 4 triangles per voxel
- 256 different cases, 15 after symmetries

Different discretization: Tetrahedra

- Different discretization: Tetrahedra
 - 6 tetrahedra per voxel (if we start from cubes)

- Different discretization: Tetrahedra
 - 6 tetrahedra per voxel (if we start from cubes)
 - 16 cases, 8 after symmetry

- Different discretization: Tetrahedra
 - 6 tetrahedra per voxel (if we start from cubes)
 - 16 cases, 8 after symmetry
 - Up to 2 triangles per tet

- Different discretization: Tetrahedra
 - 6 tetrahedra per voxel (if we start from cubes)
 - 16 cases, 8 after symmetry
 - Up to 2 triangles per tet
 - No ambiguities

- Different discretization: Tetrahedra
 - 6 tetrahedra per voxel (if we start from cubes)
 - 16 cases, 8 after symmetry
 - Up to 2 triangles per tet
 - No ambiguities
- Used when input data discretized as tetrahedra

Implementation

Big lookup tables

int edgeTable[256]={

0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 };

int triTable[256][16] =

 $\{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1, -1\},\$ {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1}, $\{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1, -1\},\$ $\{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1\},\$ {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1}, $\{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1\},\$ {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1}, $\{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1\}$ {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1} $\{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1, -1\},\$ $\{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1\},\$ $\{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1, -1\},\$ $\{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1\},\$ $\{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1, -1\},\$

[Paul Bourke]

Problems & Solutions
No Sharp Features

- Increasing grid resolution does not help
- Normals do not converge

No Sharp Features

- Increasing grid resolution does not help
- Normals do not converge

 Use normal information to find edges and corners

Using Hermite Data

Where Do Normals Come From?

• Gradient of the function $f(\mathbf{x})$ defining the surface

Sharp features are not well approximated

- Sharp features are not well approximated
- Use normal information

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges
 - Corner/edge if large angle between normals

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges
 - Corner/edge if large angle between normals
 - Add a vertex at the intersection of tangent planes

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges
 - Corner/edge if large angle between normals
 - Add a vertex at the intersection of tangent planes

Computing the intersection

$$\mathbf{n}_i \mathbf{x} = \mathbf{n}_i \mathbf{p}_i$$

- Sometimes underdetermined
 - When planes are (almost) parallel

Computing the intersection

$$\begin{bmatrix} \mathbf{n}_1^T \\ \vdots \\ \mathbf{n}_k^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \mathbf{p}_1 \\ \vdots \\ \mathbf{n}_k^T \end{bmatrix}$$

- Sometimes underdetermined
 - When planes are (almost) parallel

Computing the intersection

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \\ \vdots \\ \mathbf{n}_k^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \mathbf{p}_1 \\ \vdots \\ \mathbf{n}_k^T \mathbf{p}_k \end{bmatrix} = \mathbf{b}$$

Sometimes underdetermined

When planes are (almost) parallel

Computing the intersection

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \\ \vdots \\ \mathbf{n}_k^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \mathbf{p}_1 \\ \vdots \\ \mathbf{n}_k^T \mathbf{p}_k \end{bmatrix} = \mathbf{b}$$

- Sometimes underdetermined
 - When planes are (almost) parallel

Computing the intersection

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \\ \vdots \\ \mathbf{n}_k^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{n}_1^T \mathbf{p}_1 \\ \vdots \\ \mathbf{n}_k^T \mathbf{p}_k \end{bmatrix} = \mathbf{b}$$

Sometimes underdetermined

When planes are (almost) parallel

Underdetermined

- \bullet Many solutions to $\mathbf{A}\mathbf{x}=\mathbf{b}$
- Standard edge case in 3D

Underdetermined

- Many solutions to Ax = b
- Standard edge case in 3D

 Choose the solution closest to the center of gravity of all intersections

• Find least-squares solution: minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

- Find least-squares solution: minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
- Compute the pseudo-inverse \mathbf{A}^+ using SVD $\mathbf{x} = \mathbf{A}^+ \mathbf{b} = \mathbf{A}^+ [\mathbf{n}_1^T \mathbf{p}_1 \dots \mathbf{n}_k^T \mathbf{p}_k]^T$

- Find least-squares solution: minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
- Compute the pseudo-inverse \mathbf{A}^+ using SVD $\mathbf{x} = \mathbf{A}^+ \mathbf{b} = \mathbf{A}^+ [\mathbf{n}_1^T \mathbf{p}_1 \dots \mathbf{n}_k^T \mathbf{p}_k]^T$
- Solution for under- and over-determined system

$$\mathbf{A}\mathbf{y} = [\dots \mathbf{n}_i^T (\mathbf{p}_i - \sum_i \mathbf{p}_i / k) \dots]$$

$$\mathbf{x} = \mathbf{A}^+([\dots \mathbf{n}_i(\mathbf{p}_i - \sum_i \mathbf{p}_i/k) \dots]) + \sum_i \mathbf{p}_i/k$$

32

- Find least-squares solution: minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
- Compute the pseudo-inverse \mathbf{A}^+ using SVD $\mathbf{x} = \mathbf{A}^+ \mathbf{b} = \mathbf{A}^+ [\mathbf{n}_1^T \mathbf{p}_1 \dots \mathbf{n}_k^T \mathbf{p}_k]^T$
- Solution for under- and over-determined system

$$\mathbf{A}\mathbf{y} = [\dots \mathbf{n}_i^T (\mathbf{p}_i - \sum_i \mathbf{p}_i / k) \dots]$$

$$\mathbf{x} = \mathbf{A}^+([\dots \mathbf{n}_i(\mathbf{p}_i - \sum_i \mathbf{p}_i/k) \dots]) + \sum_i \mathbf{p}_i/k$$

32

No ambiguous cases

No ambiguous cases

No ambiguous cases

- Reintroduce ambiguity:
 - Use the regular marching cubes connectivity
 - Compute several points

- Reintroduce ambiguity:
 - Use the regular marching cubes connectivity
 - Compute several points

- Reintroduce ambiguity:
 - Use the regular marching cubes connectivity
 - Compute several points

Comparison

Comparison

Dual Methods

- Marching Cubes (Primal)
 - 1 point per edge
 - Connecting primitives (triangles) per voxel

Dual Contouring (Dual)

- I point per voxel
- Connecting primitives (quads) per edge

Dual Methods

- Marching Cubes (Primal)
 - 1 point per edge
 - Connecting primitives (triangles) per voxel

Dual Contouring (Dual)

- I point per voxel
- Connecting primitives (quads) per edge

Dual Methods

- Marching Cubes (Primal)
 - 1 point per edge
 - Connecting primitives (triangles) per voxel

Dual Contouring (Dual)

- I point per voxel
- Connecting primitives (quads) per edge

Comparison

[Ju et al. 2002]

Comparison

[Ju et al. 2002]

Marching Squares

- Given I(x)
 I(x) < q : x outside
 I(x) > q : x inside
 Discretize space
- Evaluate on the grid

Marching Squares

- Given I(x)
 I(x) < q : x outside
 I(x) > q : x inside
 Discretize space
- Evaluate on the grid

Marching Squares

Given I(x)
I(x) < q : x outside
I(x) > q : x inside
Discretize space

l			
l			

Marching Squares

- Given I(x)
 I(x) < q : x outside
 I(x) > q : x inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges

- Given $I(\mathbf{x})$ • $I(\mathbf{x}) < q : \mathbf{x}$ outside
 - $I(\mathbf{x}) > q : \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections

Compute intersections

Compute intersections

- Compute intersections
- Compute normals

- Compute intersections
- Compute normals
- Compute dual points
 - for each voxel with sign change

- Compute intersections
- Compute normals
- Compute dual points
 - for each voxel with sign change
- Connect dual points
 - across each red edge

- Compute intersections
- Compute normals
- Compute dual points
 - for each voxel with sign change
- Connect dual points
 - across each red edge
- We could reintroduce ambiguity

- No ambiguities
- Does not interpolate known surface points/ normals
- No special cases for features
- No lookup tables
- Some trickiness in matrix pseudo-inverse
- Naturally produces quads, not triangles (in 3D)
 - What would dual marching tetrahedra produce?

Mesh quality

- Dual contouring produces higher-quality meshes
 - Flat surfaces never have bad triangles/quads
- Control over placement of samples

No Topological Guarantees

Discrete Sampling: Expect Resolution Issues

[Paul Bourke]

- Reduce mesh size until all features resolved
- Within each voxel that contains the surface:

 $\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y}) > 0 \quad \forall \mathbf{x}, \mathbf{y}$

- Reduce mesh size until all features resolved
- Within each voxel that contains the surface:

 $\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y}) > 0 \quad \forall \mathbf{x}, \mathbf{y}$

- Reduce mesh size until all features resolved
- Within each voxel that contains the surface:

 $\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y}) > 0 \quad \forall \mathbf{x}, \mathbf{y}$

- Reduce mesh size until all features resolved
- Within each voxel that contains the surface:

 $\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y}) > 0 \quad \forall \mathbf{x}, \mathbf{y}$

- Reduce mesh size until all features resolved
- Within each voxel that contains the surface:

 $\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y}) > 0 \quad \forall \mathbf{x}, \mathbf{y}$

- Reduce mesh size until all features resolved
- Within each voxel that contains the surface:

 $\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y}) > 0 \quad \forall \mathbf{x}, \mathbf{y}$

• Normals in a $\frac{\pi}{2}$ -cone

Check the condition using interval arithmetic

- Good for analytic surfaces
- Expensive for sampled volume data
- Refine hierarchically: Use quadtree/octree
 - Less painful: Use tetrahedral subdivision

$$f(x, y, z) = x^4 - 5x^2 + y^4 - 5y^2 + z^4 - 5z^2 + 10$$

Summary

Topological Guarantees

- Enforced by subdivision
- Best for analytic surfaces
- Hierarchical refinement

Literature

- W. Lorensen, H. Cline: "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", SIGGRAPH '87
- J. Bloomenthal: "Polygonisation of Implicit Surfaces". Computer-Aided Geometric Design 5(4), 1988
- Foley, van Dam, Feiner, Hughes: "Computer Graphics: Principles and Practice", Addison Wesley, 1995
- S. Gibson: "Using distance maps for accurate surface reconstruction in sampled volumes", IEEE Volume Visualization Symposium, 1998
- L. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel: "Feature Sensitive Surface Extraction from Volume Data", SIGGRAPH '01
- T. Ju, F. Losasso, S. Schaeffer, J. Warren: "Dual Contouring of Hermite Data", SIGGRAPH '02
- S. Plantinga and G. Vegter: "Isotopic Meshing of Implicit Surfaces", The Visual Computer 23, 2007
- James Sharman: <u>http://www.exaflop.org/docs/marchcubes/</u>
- Paul Bourke: <u>http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/</u>