CS164: Surface Reconstruction, Marching Cubes

Leonidas Guibas
 Computer Science Dept. Stanford University

Overview

- Surface Representations
- Explicit Surfaces
- Implicit Surfaces
- Marching Cubes
- Hermite Data/Extended Marching Cubes
- Dual Contouring
- Topological Guarantees

Surface Representations

Volume Samples

\dagger

Implicit Surface \longrightarrow

Explicit Surface

\uparrow

Surface Samples

4

4

Measurements,
Simulation

Volume Samples

Implicit Surface 7
Analytic Description, Simulation

Explicit Surface

Surface Samples

Define, e.g. MLS surface

Measurements, Simulation

Volume Samples

Implicit Surface 7
Analytic Description, Simulation

Define, e.g. MLS surface

Surface Samples

Explicit Surface

Measurements

Measurements, Simulation

Volume Samples

Implicit Surface 7
Analytic Description, Simulation

Explicit Surface

Surface Samples

Define, e.g. MLS surface

Measurements, Simulation

Volume Samples

Implicit Surface 7
Analytic Description, Simulation

Define, e.g. MLS surface

Surface Samples

Explicit Surface

Measurements

 Simulation
 Simulation

Explicit (Parametric) Surfaces

- "The surface consists of these points: ..."

$$
\left\{f(\mathbf{u}) \mid \mathbf{u} \in \mathbb{R}^{2}\right\}
$$

- Splines (treated earlier)
- Piecewise-linear surfaces (polygonal meshes)
- Most common: triangle meshes

Implicit Surfaces

- "The surface consists of all points, which..." $\{\mathbf{x} \mid f(\mathbf{x})=0\}$

Isosurface around Zirconocene molecule [Accelrys]

Implicit vs. Explicit

- Different sources
- Explicit: $\left\{f(\mathbf{u}) \mid \mathbf{u} \in \mathbb{R}^{2}\right\}$
- Image of a function
- Easy to enumerate points
- Hard to check whether a given point is on the surface
- Implicit: $\{\mathbf{x} \mid f(\mathbf{x})=0\}$
- Kernel of a function
- Hard to enumerate points
- Easy to check whether a given point is on the surface

Iso-Surface of a Density Field

- Example: $f(\mathbf{x})=\sum_{i} w\left(\mathbf{x}, \mathbf{x}_{i}\right)-\rho_{0}$

Iso-Surface of a Density Field

- Example: $f(\mathbf{x})=\sum_{i} w\left(\mathbf{x}, \mathbf{x}_{i}\right)-\rho_{0}$

Iso-Surface in a CAT Scan

- $f(\mathbf{x})=I(\mathbf{x})-q$
- Samples in a regular grid
- Trilinear within voxels
- How can we make an isosurface explicit?

Marching Cubes (and variants)

Problem Statement

Given a function $I(\mathbf{x})$ defining an implicit surface

$$
\mathcal{S}=\{\mathbf{x} \mid f(\mathbf{x})=I(\mathbf{x})-q=0\},
$$

create a triangle mesh that approximates the surface S .

Overview

- Marching Cubes
- 2D case: Marching Squares
- 3D case: Marching Cubes
- Marching Tetrahedra
- Extended Marching Cubes

Dual Contouring

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside

Discretize space

Evaluate
 on the grid

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside

Discretize space

Evaluate
 on the grid

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections
- Connect intersections

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections
- Connect intersections

Computing Intersections

- Edges with a sign switch contain intersections

$$
\begin{aligned}
& f\left(\mathbf{x}_{1}\right)<0 \text { and } f\left(\mathbf{x}_{2}\right) \geq 0 \\
\Rightarrow \quad & f\left(\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)=0 \text { for some } 0<t \leq 1
\end{aligned}
$$

- Nonlinear equation, use raycasting to find root

Computing Intersections

- Edges with a sign switch contain intersections

$$
\begin{aligned}
& f\left(\mathbf{x}_{1}\right)<0 \text { and } f\left(\mathbf{x}_{2}\right) \geq 0 \\
\Rightarrow \quad & f\left(\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)=0 \text { for some } 0<t \leq 1
\end{aligned}
$$

- Nonlinear equation, use raycasting to find root
- Sampled data
- f is trilinear
- f is linear along $\mathrm{x}_{2}-\mathrm{x}_{1}$

$$
f\left(\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)=0
$$

Computing Intersections

- Edges with a sign switch contain intersections

$$
\begin{aligned}
& f\left(\mathbf{x}_{1}\right)<0 \text { and } f\left(\mathbf{x}_{2}\right) \geq 0 \\
\Rightarrow \quad & f\left(\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)=0 \text { for some } 0<t \leq 1
\end{aligned}
$$

- Nonlinear equation, use raycasting to find root
- Sampled data
- f is trilinear
- f is linear along $\mathrm{x}_{2}-\mathrm{x}_{1}$

$$
f\left(\mathbf{x}_{1}\right)+t\left(f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right)\right)=0
$$

Computing Intersections

- Edges with a sign switch contain intersections

$$
\begin{aligned}
& f\left(\mathbf{x}_{1}\right)<0 \text { and } f\left(\mathbf{x}_{2}\right) \geq 0 \\
\Rightarrow \quad & f\left(\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)=0 \text { for some } 0<t \leq 1
\end{aligned}
$$

- Nonlinear equation, use raycasting to find root
- Sampled data
- f is trilinear
- f is linear along $\mathbf{x}_{2}-\mathbf{x}_{1}$

$$
t=-f\left(\mathbf{x}_{1}\right) /\left(f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right)\right)
$$

Connecting Intersections

Treat each cell separately

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

Connecting Intersections

- Treat each cell separately
- Enumerate all possible inside/outside combinations
- Group those leading to the same intersections
- Group those equivalent after rotations
- Connect intersections

Ambiguous case

Ambiguous case

Ambiguous case

Ambiguous case

- No way to decide without further samples

Ambiguous case

- No way to decide without further samples

Ambiguous case

- No way to decide without further samples

Ambiguous case

- No way to decide without further samples
- No samples available: Just choose one

Marching Cubes

- Same basic principle in 3D
- Lines become surface patches
- Up to 4 triangles per voxel
- 256 different cases, 15 after symmetries

Marching Tetrahedra

Different discretization: Tetrahedra

Marching Tetrahedra

- Different discretization: Tetrahedra
- 6 tetrahedra per voxel (if we start from cubes)

Marching Tetrahedra

- Different discretization: Tetrahedra
- 6 tetrahedra per voxel (if we start from cubes)
- 16 cases, 8 after symmetry

[Paul Bourke]

Marching Tetrahedra

- Different discretization: Tetrahedra
- 6 tetrahedra per voxel (if we start from cubes)
- 16 cases, 8 after symmetry
- Up to 2 triangles per tet

[Paul Bourke]

Marching Tetrahedra

- Different discretization: Tetrahedra
- 6 tetrahedra per voxel (if we start from cubes)
- 16 cases, 8 after symmetry
- Up to 2 triangles per tet
- No ambiguities

Marching Tetrahedra

- Different discretization: Tetrahedra
- 6 tetrahedra per voxel (if we start from cubes)
- 16 cases, 8 after symmetry
- Up to 2 triangles per tet
- No ambiguities
- Used when input data discretized as tetrahedra

Implementation

Big lookup tables

Abstract

int edgeTable[256]=\{ 0×0, $0 \times 109,0 \times 203,0 \times 30 \mathrm{a}, 0 \times 406,0 \times 50 \mathrm{f}, 0 \times 605,0 \times 70 \mathrm{c}$, $0 \times 80 \mathrm{c}, 0 \times 905$, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00 $0 \times 190,0 \times 99,0 \times 393,0 \times 29 a, 0 \times 596,0 \times 49 f, 0 \times 795,0 \times 69 \mathrm{c}$ 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30 $0 x 3 a 0,0 x 2 a 9,0 x 1 a 3,0 x a a, 0 x 7 a 6,0 x 6 a f, 0 x 5 a 5,0 x 4 a c$ 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, $0 \times 460,0 \times 569,0 \times 663,0 \times 76 \mathrm{a}, 0 \times 66,0 \times 16 f, 0 \times 265,0 \times 36 \mathrm{c}$ 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, $0 x 5 f 0,0 x 4 f 9,0 x 7 f 3,0 x 6 f a, 0 x 1 f 6,0 x f f, 0 x 3 f 5,0 x 2 f c$, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, $0 \times 7 \mathrm{c} 0,0 \times 6 \mathrm{c} 9,0 \times 5 \mathrm{c} 3,0 \times 4 \mathrm{ca}, 0 \times 3 \mathrm{c} 6,0 \times 2 \mathrm{cf}, 0 \times 1 \mathrm{c} 5,0 \times c \mathrm{c}$, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, $0 x 8 \mathrm{c} 0,0 \times 9 \mathrm{c} 9,0 x a c 3,0 x b c a, 0 x c c 6,0 x d c f, 0 x e c 5,0 x f c c$, 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, $0 \times 2 \mathrm{fc}$, 0x3f5, 0xff $0 \times 1 \mathrm{f6}$, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, $0 \times 53 \mathrm{c}, 0 \times 435,0 \times 73 \mathrm{f}, 0 \times 636,0 \times 13 \mathrm{a}, 0 \times 33$, 0x339, 0x230 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 \}

$\{\{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$\{0,8,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,1,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,8,3,9,8,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,2,10,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,8,3,1,2,10,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{9,2,10,0,2,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{2,8,3,2,10,8,10,9,8,-1,-1,-1,-1,-1,-1,-1\}$,
$\{3,11,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,11,2,8,11,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,9,0,2,3,11,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,11,2,1,9,11,9,8,11,-1,-1,-1,-1,-1,-1,-1\}$,
$\{3,10,1,11,10,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,10,1,0,8,10,8,11,10,-1,-1,-1,-1,-1,-1,-1\}$,
$\{3,9,0,3,11,9,11,10,9,-1,-1,-1,-1,-1,-1,-1\}$,
$\{9,8,10,10,8,11,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{4,7,8,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{4,3,0,7,3,4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,1,9,8,4,7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{4,1,9,4,7,1,7,3,1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,2,10,8,4,7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{3,4,7,3,0,4,1,2,10,-1,-1,-1,-1,-1,-1,-1\}$,
$\{9,2,10,9,0,2,8,4,7,-1,-1,-1,-1,-1,-1,-1\}$,
$\{2,10,9,2,9,7,2,7,3,7,9,4,-1,-1,-1,-1\}$,
$\{8,4,7,3,11,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{11,4,7,11,2,4,2,0,4,-1,-1,-1,-1,-1,-1,-1\}$,
$\{9,0,1,8,4,7,2,3,11,-1,-1,-1,-1,-1,-1,-1\}$,
$\{4,7,11,9,4,11,9,11,2,9,2,1,-1,-1,-1,-1\}$,
$\{3,10,1,3,11,10,7,8,4,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,11,10,1,4,11,1,0,4,7,11,4,-1,-1,-1,-1\}$,
$\{4,7,8,9,0,11,9,11,10,11,0,3,-1,-1,-1,-1\}$,
$\{4,7,11,4,11,9,9,11,10,-1,-1,-1,-1,-1,-1,-1\}$,
$\{9,5,4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{9,5,4,0,8,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,5,4,1,5,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{8,5,4,8,3,5,3,1,5,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,2,10,9,5,4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{3,0,8,1,2,10,4,9,5,-1,-1,-1,-1,-1,-1,-1\}$,
$\{5,2,10,5,4,2,4,0,2,-1,-1,-1,-1,-1,-1,-1\}$,
$\{2,10,5,3,2,5,3,5,4,3,4,8,-1,-1,-1,-1\}$,
$\{9,5,4,2,3,11,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{0,11,2,0,8,11,4,9,5,-1,-1,-1,-1,-1,-1,-1\}$,

int triTable[256][16] =
$\{\{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$\{0,8,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$1,8,3,9,8,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$1,2,10,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$0,8,3,1,2,10,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
, 2, 10, 0, 2, $9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$2,8,3,2,10,8,10,9,8,-1,-1,-1,-1,-1,-1,-1\}$
$\{3,11,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$,
$\{1,9,0,2,3,11,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1
, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1\}
$0,10,1,0,8,10,8,11,10,-1,-1,-1,-1,-1,-1,-1\}$
$3,9,0,3,11,9,11,10,9,-1,-1,-1,-1,-1,-1,-1\}$
$\{9,8,10,10,8,11,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
, $1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$0,1,9,8,4,7,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$4,1,9,4,7,1,7,3,1,-1,-1,-1,-1,-1,-1,-1\}$,
$1,2,10,8,4,7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$3,4,7,3,0,4,1,2,10,-1,-1,-1,-1,-1,-1,-1\}$,
$2,10,9,2,9,7,2,7,3,7,9,4,-1,-1,-1,-1\}$,
, $1,3,11,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$\{9,0,1,8,4,7,2,3,11,-1,-1,-1,-1,-1,-1,-1\}$,
$\{4,7,11,9,4,11,9,11,2,9,2,1,-1,-1,-1,-1\}$,
$3,10,1,3,11,10,7,8,4,-1,-1,-1,-1,-1,-1,-1\}$
$4,7,8,9,0,11,9,11,10,11,0,3,-1,-1,-1,-1\}$
, $7,11,4,11,9,9,11,10,-1,-1,-1,-1,-1,-1,-1\}$
$\{9,5,4,0,8,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$\{0,5,4,1,5,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$
$8,5,4,8,3,5,3,1,5,-1,-1,-1,-1,-1,-1,-1\}$
$\{3,0,8,1,2,10,4,9,5,-1,-1,-1,-1,-1,-1,-1\}$.
$\{5,2,10,5,4,2,4,0,2,-1,-1,-1,-1,-1,-1,-1\}$
, $, 5,3,2,5,3,5,4,3,4,8,-1,-1,-1,-1\}$
$\{0,11,2,0,8,11,4,9,5,-1,-1,-1,-1,-1,-1,-1\}$,

Problems \& Solutions

No Sharp Features

- Increasing grid resolution does not help
- Normals do not converge

No Sharp Features

- Increasing grid resolution does not help
- Normals do not converge

- Use normal information to find edges and corners

Using Hermite Data

Where Do Normals Come From?

- Gradient of the function $f(\mathbf{x})$ defining the surface

Extended Marching Cubes

- Sharp features are not well approximated

Extended Marching Cubes

- Sharp features are not well approximated
- Use normal information

Extended Marching Cubes

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges

Extended Marching Cubes

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges
- Corner/edge if large angle between normals

Extended Marching Cubes

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges
- Corner/edge if large angle between normals
- Add a vertex at the intersection of tangent planes

Extended Marching Cubes

- Sharp features are not well approximated
- Use normal information
- Special treatment for corners and edges
- Corner/edge if large angle between normals
- Add a vertex at the intersection of tangent planes

Extended Marching Cubes

- Computing the intersection

$$
\mathbf{n}_{i} \mathbf{x}=\mathbf{n}_{i} \mathbf{p}_{i}
$$

- Sometimes underdetermined
- When planes are (almost) parallel
- Sometimes overdetermined
- When too many planes

Extended Marching Cubes

- Computing the intersection

$$
\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \\
\vdots \\
\mathbf{n}_{k}^{T}
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \mathbf{p}_{1} \\
\vdots \\
\mathbf{n}_{k}^{T} \mathbf{p}_{k}
\end{array}\right]
$$

- Sometimes underdetermined
- When planes are (almost) parallel
- Sometimes overdetermined
- When too many planes

Extended Marching Cubes

- Computing the intersection

$$
\mathbf{A x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \\
\vdots \\
\mathbf{n}_{k}^{T}
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \mathbf{p}_{1} \\
\vdots \\
\mathbf{n}_{k}^{T} \mathbf{p}_{k}
\end{array}\right]=\mathbf{b}
$$

- Sometimes underdetermined
- When planes are (almost) parallel
- Sometimes overdetermined
- When too many planes

Extended Marching Cubes

- Computing the intersection

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \\
\vdots \\
\mathbf{n}_{k}^{T}
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \mathbf{p}_{1} \\
\vdots \\
\mathbf{n}_{k}^{T} \mathbf{p}_{k}
\end{array}\right]=\mathbf{b}
$$

- Sometimes underdetermined
- When planes are (almost) parallel

Extended Marching Cubes

- Computing the intersection

$$
\mathbf{A x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \\
\vdots \\
\mathbf{n}_{k}^{T}
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
\mathbf{n}_{1}^{T} \mathbf{p}_{1} \\
\vdots \\
\mathbf{n}_{k}^{T} \mathbf{p}_{k}
\end{array}\right]=\mathbf{b}
$$

- Sometimes underdetermined
- When planes are (almost) parallel
- Sometimes overdetermined
- When too many planes

Underdetermined

- Many solutions to $\mathbf{A x}=\mathrm{b}$
- Standard edge case in 3D

Underdetermined

- Many solutions to $\mathbf{A x}=\mathrm{b}$
- Standard edge case in 3D

- Choose the solution closest to the center of gravity of all intersections

Overdetermined

- Find least-squares solution: minimize $\|\mathbf{A x}-\mathbf{b}\|^{2}$

Overdetermined

- Find least-squares solution: minimize $\|\mathbf{A x}-\mathbf{b}\|^{2}$
- Compute the pseudo-inverse A^{+}using SVD

$$
\mathbf{x}=\mathbf{A}^{+} \mathbf{b}=\mathbf{A}^{+}\left[\mathbf{n}_{1}^{T} \mathbf{p}_{1} \ldots \mathbf{n}_{k}^{T} \mathbf{p}_{k}\right]^{T}
$$

Overdetermined

- Find least-squares solution: minimize $\|\mathbf{A x}-\mathbf{b}\|^{2}$
- Compute the pseudo-inverse A^{+}using SVD

$$
\mathbf{x}=\mathbf{A}^{+} \mathbf{b}=\mathbf{A}^{+}\left[\mathbf{n}_{1}^{T} \mathbf{p}_{1} \ldots \mathbf{n}_{k}^{T} \mathbf{p}_{k}\right]^{T}
$$

- Solution for under- and over-determined system

$$
\begin{gathered}
\mathbf{A y}=\left[\ldots \mathbf{n}_{i}^{T}\left(\mathbf{p}_{i}-\sum_{i} \mathbf{p}_{i} / k\right) \ldots\right] \\
\mathbf{x}=\mathbf{A}^{+}\left(\left[\ldots \mathbf{n}_{i}\left(\mathbf{p}_{i}-\sum_{i} \mathbf{p}_{i} / k\right) \ldots\right]\right)+\sum_{i} \mathbf{p}_{i} / k
\end{gathered}
$$

Overdetermined

- Find least-squares solution: minimize $\|\mathbf{A x}-\mathbf{b}\|^{2}$
- Compute the pseudo-inverse A^{+}using SVD

$$
\mathbf{x}=\mathbf{A}^{+} \mathbf{b}=\mathbf{A}^{+}\left[\mathbf{n}_{1}^{T} \mathbf{p}_{1} \ldots \mathbf{n}_{k}^{T} \mathbf{p}_{k}\right]^{T}
$$

- Solution for under- and over-determined system

$$
\mathbf{A y}=\left[\ldots \mathbf{n}_{i}^{T}\left(\mathbf{p}_{i}-\sum_{i} \mathbf{p}_{i} / k\right) \ldots\right]
$$

$$
\mathbf{x}=\mathbf{A}^{+}\left(\left[\ldots \mathbf{n}_{i}\left(\mathbf{p}_{i}-\sum_{i} \mathbf{p}_{i} / k\right) \ldots\right]\right)+\sum_{i} \mathbf{p}_{i} / k
$$

Extended Marching Cubes

- No ambiguous cases

Extended Marching Cubes

- No ambiguous cases

Extended Marching Cubes

- No ambiguous cases

Extended Marching Cubes

- Reintroduce ambiguity:
- Use the regular marching cubes connectivity
- Compute several points

Extended Marching Cubes

- Reintroduce ambiguity:
- Use the regular marching cubes connectivity
- Compute several points

Extended Marching Cubes

- Reintroduce ambiguity:
- Use the regular marching cubes connectivity
- Compute several points

Comparison

Input data

Marching Cubes

Extended Marching Cubes

Comparison

Input data

Marching Cubes

Extended Marching Cubes

Dual Methods

- Marching Cubes (Primal)
- 1 point per edge
- Connecting primitives (triangles) per voxel
- Dual Contouring (Dual)
- 1 point per voxel
- Connecting primitives (quads) per edge

Dual Methods

- Marching Cubes (Primal)
- 1 point per edge
- Connecting primitives (triangles) per voxel
- Dual Contouring (Dual)
- 1 point per voxel
- Connecting primitives (quads) per edge

Dual Methods

- Marching Cubes (Primal)
- 1 point per edge
- Connecting primitives (triangles) per voxel
- Dual Contouring (Dual)
- 1 point per voxel
- Connecting primitives (quads) per edge

Comparison

Input data

Extended Marching
Cubes

[Ju et al. 2002]

Marching Cubes

Dual
Contouring

Comparison

Extended
 Marching
 Cubes

Marching Cubes

Dual
Contouring

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside

Discretize space

Evaluate
 on the grid

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside

Discretize space

Evaluate
 on the grid

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space

Marching Squares

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid

2D Dual Contouring

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathrm{x})$ on the grid
- Classify grid points

2D Dual Contouring

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges

2D Dual Contouring

- Given $I(\mathbf{x})$
- $I(\mathbf{x})<q: \mathbf{x}$ outside
- $I(\mathbf{x})>q: \mathbf{x}$ inside
- Discretize space
- Evaluate $f(\mathbf{x})$ on the grid
- Classify grid points
- Classify grid edges
- Compute intersections

2D Dual Contouring

- Compute intersections

2D Dual Contouring

- Compute intersections

2D Dual Contouring

- Compute intersections - Compute normals

2D Dual Contouring

- Compute intersections
- Compute normals
- Compute dual points
- for each voxel with sign change

2D Dual Contouring

- Compute intersections
- Compute normals
- Compute dual points
- for each voxel with sign change
- Connect dual points
- across each red edge

2D Dual Contouring

- Compute intersections
- Compute normals
- Compute dual points - for each voxel with sign change
- Connect dual points
- across each red edge
- We could reintroduce ambiguity

Dual Contouring

- No ambiguities
- Does not interpolate known surface points/ normals
- No special cases for features
- No lookup tables
- Some trickiness in matrix pseudo-inverse
- Naturally produces quads, not triangles (in 3D)
- What would dual marching tetrahedra produce?

Mesh quality

- Dual contouring produces higher-quality meshes
- Flat surfaces never have bad triangles/quads
- Control over placement of samples

No Topological Guarantees

- Discrete Sampling: Expect Resolution Issues

Isotopic Meshing

- Reduce mesh size until all features resolved - Within each voxel that contains the surface:

$$
\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y})>0 \quad \forall \mathbf{x}, \mathbf{y}
$$

- Normals in a -cone

Isotopic Meshing

- Reduce mesh size until all features resolved - Within each voxel that contains the surface:

$$
\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y})>0 \quad \forall \mathbf{x}, \mathbf{y}
$$

- Normals in a -cone

Isotopic Meshing

- Reduce mesh size until all features resolved - Within each voxel that contains the surface:

$$
\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y})>0 \quad \forall \mathbf{x}, \mathbf{y}
$$

- Normals in a -cone

Isotopic Meshing

- Reduce mesh size until all features resolved - Within each voxel that contains the surface:

$$
\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y})>0 \quad \forall \mathbf{x}, \mathbf{y}
$$

- Normals in a -cone

Isotopic Meshing

- Reduce mesh size until all features resolved - Within each voxel that contains the surface:

$$
\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y})>0 \quad \forall \mathbf{x}, \mathbf{y}
$$

- Normals in a -cone

Isotopic Meshing

- Reduce mesh size until all features resolved - Within each voxel that contains the surface:

$$
\nabla f(\mathbf{x}) \cdot \nabla f(\mathbf{y})>0 \quad \forall \mathbf{x}, \mathbf{y}
$$

- Normals in a $\frac{\pi}{2}$-cone

Isotopic Meshing

- Check the condition using interval arithmetic
- Good for analytic surfaces
- Expensive for sampled volume data
- Refine hierarchically: Use quadtree/octree
- Less painful: Use tetrahedral subdivision

Isotopic Meshing

$$
f(x, y, z)=x^{4}-5 x^{2}+y^{4}-5 y^{2}+z^{4}-5 z^{2}+10
$$

Summary

Measurements, Simulation

Marching Cubes
Volume Samples
Signed Distance Transform

Explicit Surface

Surface Samples

 Simulation

Marching Cubes Variants

Marching
Cubes

- Lookup tables
- No sharp features

Extended
Marching
Cubes

- Hybrid method
- Edges/

Corners are special cases

- Need feature threshold

Dual
Contouring

- Dual method
- No special cases
- No feature threshold

Topological Guarantees

- Enforced by subdivision
- Best for analytic surfaces
- Hierarchical refinement

Literature

- W. Lorensen, H. Cline: "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", SIGGRAPH '87
- J. Bloomenthal: "Polygonisation of Implicit Surfaces". Computer-Aided Geometric Design 5(4), 1988
- Foley, van Dam, Feiner, Hughes: "Computer Graphics: Principles and Practice", Addison Wesley, 1995
- S. Gibson: "Using distance maps for accurate surface reconstruction in sampled volumes", IEEE Volume Visualization Symposium, 1998
- L. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel: "Feature Sensitive Surface Extraction from Volume Data", SIGGRAPH ‘01
- T. Ju, F. Losasso, S. Schaeffer, J. Warren: "Dual Contouring of Hermite Data", SIGGRAPH '02
- S. Plantinga and G. Vegter: "Isotopic Meshing of Implicit Surfaces", The Visual Computer 23, 2007
- James Sharman: http://www.exaflop.org/docs/marchcubes/
- Paul Bourke: http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/

