
...He had Cinderella sit down, and, putting the
slipper to her foot, he found that it went on very
easily, fitting her as if it had been made of wax.

C. Perrault, Cinderella

6

In the Rigid Kingdom

Imagine a glamorous royal ball hosted by a young Prince in his palace. Among
hundreds of elegantly dressed guests, a fair lady comes uninvited. The Prince,
struck by her radiant beauty, falls in love from the first sight. But all of
a sudden, as the tower clock bell sounds the first stroke of midnight, the
mysterious guest slips from the Prince’s arms and vanishes into the darkness
without a word of goodbye, leaving as the only evidence of her visit a tiny
glass slipper. The Prince swears to marry the girl whose petite foot fits into
it. He commands all maids in his kingdom to measure the slipper, and after
a long search finally finds a poor girl, whose foot fits perfectly. The Prince
recognizes his fair guest, declares his love to her, and they marry and live
happily ever after.

In this brief synopsis, the reader will certainly recognize the plot of
Cinderella.1 This fairy tale illustrates the problem of surface similarity. Speak-
ing in our language, the Prince was looking for a distance function that given
two surfaces (those of the slipper and the girl’s foot) provides a quantitative
measure of their similarity. For this discussion, we will assume that as well
as the glass slipper, Cinderella’s foot is rigid and cannot be bent, folded, or
deformed in any way; one can only change its location and orientation in
space. Formally, we say that our objects are subsets of R

3 with the standard
Euclidean metric, in which the isometry group contains only rigid transforma-
tions: translation and rotation (reflections are usually excluded because they
are not physical transformations). Similarity of two surfaces in such a case is
extrinsic and, up to a Euclidean isometry, can be thought of as a measure of
their congruence.

In this chapter, we explore tools for comparison of extrinsic geometries
in a way invariant to rigid transformations. We will start our discussion in a
pursuit after a representation of two surfaces X and Y that is invariant to
Euclidean isometries. Next, we will view the similarity problem through the
prism of numerical optimization and see how it is related to another problem
of alignment or correspondence of rigid surfaces.

A. Bronstein et al., Numerical Geometry of Non-Rigid Shapes, 119
Monographs in Computer Science, DOI 10.1007/978-0-387-73301-2 6
c© Springer Science+Business Media, LLC 2008

120 6 In the Rigid Kingdom

Figure 6.1. Cinderella trying on the slipper in Gustave Doré’s engraving.

6.1 Moments of joy, moments of sorrow

Every rigid transformation in R
3 can be described by six parameters: three

rotation angles θ = (θ1, θ2, θ3)T about the x, y, and z axes, respectively, and
three translation coordinates t = (t1, t2, t3)T. Such a transformation reposi-
tions a vector x in R

3 to

x′ = Rx + t = R1R2R3x + t,

where

R1 =

⎛

⎝
1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎞

⎠ , R2 =

⎛

⎝
cos θ2 0 sin θ2

0 1 0
− sin θ2 cos θ2

⎞

⎠ ,

and

6.1 Moments of joy, moments of sorrow 121

R3 =

⎛

⎝
cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎞

⎠

are rotation matrices.2

A straightforward approach for getting rid of rigid isometries is to find a
Euclidean transformation that brings a surface X to some “canonical” place-
ment in R

3. For example, if we could identify a landmark point s0 on X ,
translating the surface by t = −s0 would always bring that point to the ori-
gin, resolving the ambiguity in surface position. However, finding landmark
points requires additional information about the surface, which is not always
available.

Nevertheless, there exist several points that can be found for every three-
dimensional surface. One of such points is the extrinsic centroid (the terms
center of mass and center of gravity are often used as synonyms),

x0 =
∫

X

xdx, (6.1)

which is essentially the “average location” of X (note that unlike its intrinsic
counterpart we have encountered in Chapter 3, the extrinsic centroid does not
necessarily belong to X). Clearly, translating the surface in such a way that
x0 coincides with the origin resolves the translation ambiguity.

Next, we have to resolve the remaining three degrees of freedom due to
rotation. This can be done by finding a direction in which the surface has
maximum extent, and aligning it, say, with the the e1 axis (Figure 6.2, left).
Because a direction is described by a unit vector in R

3, this step resolves only
two of the three degrees of freedom. The remaining degree of freedom is due
to the rotation ambiguity about the e1 axis. However, we can apply the same
idea again by rotating the surface such that the projection on the e2e3 plane,
which can be illustrated as the footprint of the shadow cast by the surface
(Figure 6.2, right), has the maximum extent in the direction of the e2 axis.

Formally, the first direction we are looking for can be defined as the one
that maximizes the variance of the projection of X onto it,

d1 = arg max
d1:‖d1‖2=1

∫

X

(dT
1 x)2dx,

where we assume that the surface has already been translated so that x0 = 0.
Observe that the integrand (dT

1 x)2 can be written as dT
1 xxTd1. Because d1

does not participate in the integration, we can write

d1 = arg max
d1:‖d1‖2=1

dT
1

(∫

X

xxTdx

)

d1 = arg max
d1:‖d1‖2=1

dT
1 ΣXd1.

Σ, is a 3 × 3 matrix, whose elements

122 6 In the Rigid Kingdom

x0

d1

x0

d1

d2

y
yd2

T

x

xd1
T

Figure 6.2. The first principal direction d1 of the surface maximizes the variance
of the projection of X onto it (left). Then, the surface is projected onto the plane
orthogonal to d1 (right, grayed) and the second principal direction d2 is chosen as
the maximum variance direction in that plane.

σij =
∫

X

xixjdx (6.2)

are usually referred to as the second-order geometric moments of the surface,3

and the direction d1 maximizing the projection variance is called the first
principal direction. Observe that the first principal direction, which has to
maximize dT

1 Σd1, is nothing but the first eigenvector of Σ corresponding with
its maximum eigenvalue. In order to find the second principal direction, we
have to project the surface onto the plane orthogonal to d1 and find the vector
d2 in that plane, which maximizes the variance of the projection. Obviously,
d2 corresponds with the second largest eigenvector of Σ.

Because the matrix Σ is symmetric, it admits unitary diagonalization, that
is, Σ = UTΛU , where Λ is a diagonal matrix with eigenvalues λ1 ≥ λ2 ≥ λ3

of Σ along the diagonal, and U is a unitary matrix whose columns are the
corresponding eigenvectors. We leave as an exercise (Problem 6.1) the proof
of the fact that UT is a rotation matrix aligning d1 and d2 with the e1 and
e2 axes, respectively. Clearly, after such an alignment, the main second-order
moments σii coincide with λi, whereas the mixed second-order moments (that
is, the off-diagonal elements σ12, σ13 and σ23) vanish.

Thus far, we have seen that the transformation (R, t) = (UT,−UTx0) re-
solves the ambiguity of rigid isometries and brings the surface into a “canon-
ical” configuration in the Euclidean space (Figure 6.3). Our goal is now to

6.1 Moments of joy, moments of sorrow 123

d3

d1

d2

x0

Figure 6.3. The two principal directions d1, d2 and a unit vector d3 orthogonal
to them define a natural coordinate system of the surface. Aligning these principal
directions with the axes ei of the standard Euclidean basis resolves the rotation
ambiguity.

compare between two surfaces X and Y and quantify their similarity. We ob-
serve that the three eigenvalues λ1, λ2, and λ3 of Σ provide some information
about the surface extrinsic geometry. Indeed, a shape similar to a sphere is
expected to have λ1 ≈ λ2 ≈ λ3, whereas a more elongated surface should def-
initely have λ1 � λ2. In other words, the ratios λ2 : λ1 and λ3 : λ1 describe
the shape eccentricity, and their magnitude express the shape scale.

We do not have to stop at the second-order moments and can define the
(p + q + r)-th order geometric moment as

mpqr =
∫

X

(x1)p(x2)q(x3)rdx. (6.3)

Note that the center of gravity of the surface is a vector of its first-order
moments, x0 = (m100, m010, m001)T, whereas the elements of Σ correspond
with σ11 = m200, σ22 = m020, σ33 = m002 (diagonal elements), and σ12 =
m110, σ13 = m101, σ23 = m011 (off-diagonal elements). Higher-order moments
depend on the surface position and orientation; they should be computed
after performing the alignment step that eliminates the first-order and mixed
second-order moments. The discretization of the integral in equation (6.3) is
left as an exercise to the reader (Problem 6.3).

124 6 In the Rigid Kingdom

Intuitively, higher-order geometric moments provide us information about
the surface: the more mpqr’s we take, the better we can identify our object. It
appears that if all moments of two surfaces coincide, the surfaces are identical.
In order to understand this property, let us rewrite the (p, q, r) geometric
moment of a surface as

mpqr(f) =
∫

R3
ψpqr(x)f(x)dx = 〈ψpqr , f〉, (6.4)

where ψpqr(x) = (x1)p(x2)q(x3)r, and f : R
3 → R is a superposition of charac-

teristic functions, taking the value of “infinity” for x ∈ X and zero elsewhere4

in R
3. Using these notations, we immediately notice that {mpqr}∞p,q,r=0 assume

the role of the decomposition coefficients of f in the set of monomial functions
{ψpqr}∞p,q,r=0. Because {ψpqr} span the space of all finite energy (more pre-
cisely, square integrable or L2) functions on R

3, the set of coefficients {mpqr}
is unique for each surface. Indeed, if the functions f and g describing two
surfaces X and Y , respectively, differ by some h = f −g with non-zero energy
(that is,

∫
R3 h2(x)dx > 0), then there must exist some non-zero coefficients

mh
pqr(h) such that h =

∑
mpqr(h)ψpqr . Consequently,

mpqr(f) = 〈ψpqr , f〉 = 〈ψpqr , g + h〉 = mpqr(g) + mpqr(h) �= mpqr(f),

at least for some values of p, q, and r. This means that the set of all geometric
moments constitutes a unique descriptor of a given surface, which is also
invariant to rigid isometries if proper alignment is performed. This descriptor
is also complete, meaning that, at least theoretically, one can recover5 the
surface from {mpqr}∞p,q,r=0.

Generally, all moments are needed to uniquely identify a surface. If we are
given only a truncated set {mpqr}P

p,q,r=0 of moments up to the P -th order,
there exist an infinitely large number of surfaces differing only in moments
above the P -th order. However, it appears that this variety of surfaces becomes
more and more similar to our surface as we increase P . In other words, even
a finite set of high-order moments serves as a “fingerprint” or “signature”
that identifies a sufficiently narrow class of surfaces. Ideally, we would like
to be able to say that surfaces with bounded “frequencies” can be uniquely
described by a finite set of moments.6 Unfortunately, in the case of geometric
moments, it is difficult to express the geometric properties of such surfaces.
For this reason, geometric moments are not the best choice for measuring
similarity of shapes. Other types of moments having a more clear “frequency”
interpretation such as the spherical harmonics [188] or the Legendre moments
[376] are usually preferred.

Using a finite set of moments, either geometric or other, we can quantify
the similarity of two surfaces X and Y by applying some norm to the differ-
ence between their finite moment signatures {mpqr(X)} and {mpqr(Y)}, for
example,

6.2 Iterative closest point algorithms 125

dMOM(X, Y) =
P∑

p,q,r=0

(mpqr(X) − mpqr(Y))2. (6.5)

Said differently, dMOM is a distance function that measures the dissimilarity
between two surfaces (hereinafter, we use the term “distance” in a broad
sense, not necessarily implying that dMOM is a metric). Provided that X and
Y are aligned prior to computing dMOM, this distance function is invariant to
rigid isometries. Surfaces having small distance between them are supposed to
be nearly congruent (extrinsically similar), and conversely, nearly congruent
surfaces result in a small dMOM.

However, it is important to mention that the moment signature distance
dMOM has several flaws. First, recall that the continuous surfaces X and Y
that we have been using freely are never available; all we have are samplings
of the surfaces. It appears that the computation of moments is sensitive to the
sampling, or more precisely, to sampling non-uniformity. Second, a relatively
dense sampling is required in order to obtain reliable results. Third, compu-
tation of high-order geometric moments is sensitive to acquisition noise and
inaccuracies due to the use of finite-precision arithmetics (see Problem 6.5).
These shortcomings may limit the applicability of surface comparison meth-
ods based on moment signatures. Yet, a more serious disadvantage of dMOM

is that we cannot use it as a criterion of partial similarity.
Returning to our fairy tale example, imagine that the Prince imprudently

drops the glass slipper, which breaks apart. Using moments signatures, he
would never succeed in finding Cinderella, as a part of the slipper obviously
has different moments than the does complete one. It is clear that the Prince
needs a better distance function that still works even when the surfaces are
given only partially. To his help comes a family of the so-called iterative closest
point algorithms (ICP for short), first introduced by Chen and Medioni [99],
and then independently by Besl and McKay [31].

6.2 Iterative closest point algorithms

The idea behind the iterative closest point algorithms is simple: given two
surfaces, X and Y , find the rigid transformation (R, t), such that the trans-
formed surface Y ′ = RY + t is as “close” as possible to X . “Closeness” is
expressed in terms of some surface-to-surface distance d(RY + t, X). More
precisely, ICP can be formulated as the minimization problem,

dICP(X, Y) = min
R,t

d(RY + t, X). (6.6)

The minimum surface-to-surface distance expresses the extrinsic similarity of
X and Y . Because the minimum is searched over all Euclidean transforma-
tions, dICP is clearly invariant to rigid isometries. ICP was first proposed and

126 6 In the Rigid Kingdom

is currently used mainly for registration (alignment) of surfaces. In fact, the
optimal rigid transformation (R∗, t∗) is the best alignment between Y and X .

Iterative closest point algorithms differ in the choice of the surface-to-
surface distance d(Y ′, X) and the numerical method for solving the mini-
mization problem. One of the possible candidates for such a distance could be
the Hausdorff distance

dH,R3(Y ′, X) = max
{

sup
x∈X

dR3(x, Y ′), sup
y∈Y ′

dR3(y, X)
}

,

which we have already encountered in Chapter 3. However, the Hausdorff
distance is rarely used in practice due to its sensitivity to outliers: difference
in a single sample can make dH arbitrarily large. Most commonly, d(Y ′, X)
is expressed as the sum of squared distances between all points on Y ′ to the
surface X ,

d(Y ′, X) =
∑

y∈Y ′

d2(y, X). (6.7)

Because Y is discrete, the sum is finite and can be thought of as an L2 ap-
proximation of the Hausdorff distance. Note that in this formulation d(Y ′, X)
is not symmetric, yet this “unaesthetic” lack of symmetry allows ICP to han-
dle partially missing data. Indeed, assume that Y ′ is congruent to a subset
of the surface X . Because every point y on Y ′ also exists on X , we obtain
d(Y, X) = 0 and, consequently, dICP(X, Y) = 0. That is, we are able to tell
that a part is similar to the whole. If we now take X to be congruent to a part
of Y , no matter how we rotate and translate Y , there will always be points
on it that have no corresponding points on X and thus dICP(X, Y) will not
vanish. This means that the whole surface is not similar to its part, which in
most cases satisfies our intuition.

The variety of choices of the surface-to-surface distance d(Y ′, X) is now
shifted to the choice of the squared point-to-surface distance d2(y, X). The
simplest possibility is to find for every y ∈ Y ′ the closest point7 x∗ on X and
define d2(y, X) as the Euclidean distance to that point,

d2(y, X) = min
x∈X

‖x − y‖2
2 = ‖x∗ − y‖2

2. (6.8)

This point-to-point distance (Figure 6.4, left) was first proposed by Besl and
McKay [31] and was probably the origin of the name “iterative closest point”
that labeled this family of rigid registration algorithms. Finding the closest
point on X for every y on Y establishes a correspondence between the two
surfaces. Clearly, every y may have its own closest point, and theoretically,
we have to go over all the points of X to find it for a given y.

Observe that the point-to-point distance treats X as a cloud of points.
However, in reality X is a surface, and when a point gets sufficiently close
to it, X can be approximated locally as a plane. Hence, if X is given as a
triangulated mesh, we can choose d2(y, X) to be the point-to-plane distance

6.2 Iterative closest point algorithms 127

N

d

y y

y

N

T1
T2

x* x*

d
vn

v

v1
v2

x*

Figure 6.4. The point-to-surface distance approximated using the point-to-point
(left), point-to-plane (center), and point-to-quadratic surface (right) distances. v
and vn, v1, and v2 denote the vector y − x∗ and its projections on N , T1, and T2,
respectively.

d2(y, X) = min
x∈X

〈N(x), x − y〉2, (6.9)

where N(x) denotes the unit normal vector to the surface X at the point x
(Figure 6.4, center). However, now our situation is even worse than before, as
the closest point x∗ is no more restricted to be one of the samples of the surface
X and can be therefore found anywhere on its triangular faces. Obviously, it is
impractical to search for the exact closest point. A reasonable compromise is
to approximate x∗ by the closest sample of X as we did in the point-to-point
distance. Such an approximate point-to-plane distance was used by Chen and
Medioni [99].

The point-to-plane distance is based essentially on a local first-order ap-
proximation of the surface by a plane. We can refine this model by using a
second-order approximation, which in addition to the normal vector N also
requires the two principal curvatures κ1, κ2 and the corresponding principal
directions T1 and T2 at every point.8 Pottmann and Hofer [316] showed that
the second-order Taylor approximant9 of the squared point-to-surface distance
can be expressed as

d2(y, X) ≈ d

d − ρ1
〈T1(x∗), y − x∗〉2 +

d

d − ρ2
〈T2(x∗), y − x∗〉2

+ 〈N(x∗), y − x∗〉2 , (6.10)

where ρi = 1/κi are the principal curvature radii at the point x∗, and d is the
signed distance to the closest point, defined as d = ‖y−x∗‖2 when x∗ is found
at the same side of the surface pointed by the normal, and d = −‖y − x∗‖2

when x∗ is located at the other side (Figure 6.4, right).
Observe that for d � ρ, the first two terms vanish and d(y, X) becomes

the point-to-plane distance (6.9). At the other extremity, when d � ρ, one
has

128 6 In the Rigid Kingdom

d2(y, X) ≈ 〈T1, y − x∗〉2 + 〈T2, y − x∗〉2 + 〈N, y − x∗〉2 = ‖x∗ − y‖2,

which is nothing but the point-to-point distance (6.8). Using wave termi-
nology, the point-to-point distance is a second-order accurate “far field” ap-
proximation of the true point-to-surface distance, whereas the point-to-plane
distance is second-order accurate in the “near field.” This corresponds with
our intuition: observed from a distance, X behaves like a point, whereas at
short distances, the planar approximation is more accurate.

The Pottmann-Hofer distance (6.10) gives an accurate approximation to
the point-to-surface distance for all ranges of d. Its only problem is that for
some values of d, this approximation may become negative. To avoid this
problem, Pottmann and Hofer proposed the following non-negative quadratic
approximant

d2(y, X) ≈ d

d + ρ1
〈T1(x∗), y − x∗〉2 +

d

d + ρ2
〈T2(x∗), y − x∗〉2

+ 〈N(x∗), y − x∗〉2 .

In general, it appears to be the best choice for the squared point-to-surface
distance; its only disadvantage is the need to compute the principal curvatures
and directions on the surface X . When X is contaminated by noise or sparsely
sampled, this is not a trivial task.

6.3 Enter numerical optimization

Thus far, we have explored three types of functions measuring the squared
distance between a point y and the surface X . Any of these distances can
be employed in the ICP algorithm by plugging it into d(RY + t, X) in (6.6).
Our next goal is to find such a Euclidean transformation (R, t) that minimizes
d(RY + t, X). A straightforward way is to find the correspondence between
Y and X , construct the objective function (whose terms d2(y′, X) depend on
the correspondence), and find the rigid isometry (R, t) that minimizes this
objective function. Once we have the optimal rigid isometry, we apply it to
the surface Y hoping that now it is aligned in the best way with X . However,
we may discover that the transformation has changed the correspondence and
the new objective can be further minimized by another rigid transformation.
Therefore, we repeat the entire process again until the surface Y comes to
a halt, that is, the optimal rigid transformation is close enough to the iden-
tity transformation. Formally, this leads to the iterative procedure shown in
Algorithm 6.1.

This is essentially the way the first ICP algorithms worked. Step 3 can be
performed using any unconditional minimization method. For the point-to-
point distance, there even exists a closed-form solution for the optimal (R, t)
[208].

6.3 Enter numerical optimization 129

input : Surfaces X and Y .
output : Optimal alignment (R, t), extrinsic similarity dICP.
initialization: Y ′ = Y .

repeat1

Find the correspondence x∗(y) = arg min
x∈X

‖y − x‖2
2 for all y ∈ Y .

2

Minimize the error function3

(R, t) = arg min
R,t

∑

y∈Y ′

d2(Ry + t, X)

Transform Y ′ ←− RY ′ + t.4

until convergence5

Algorithm 6.1. Iterative closest point algorithm.

The above ICP algorithm is actually a heuristic approach, and little can be
said about its convergence. The optimal rigid transformation (R, t) found in
Step 3 minimizes the objective based on the correspondence found in Step 2.
However, after the transformation is applied, the function d(RY ′ + t, X) may
be different from the one for which the transformation was found. Conse-
quently, it is not guaranteed that this simple ICP algorithm will generate a
monotonically decreasing sequence of objective function values and eventually
converge.10 On the other hand, we are already acquainted with various nu-
merical optimization methods that guarantee convergence at least to a local
minimum. An attempt to fill this apparent gap by putting the iterative closest
point algorithms on this solid numerical ground seems to be imminent.

This was probably the motivation that guided Mitra et al. [277], who in
2004 made an important step toward this goal. The authors noted that the
quadratic approximant to d2(y, X) can be written as

d2(y, X) ≈ yTQ(y)y + b(q)Ty + c(y), (6.11)

where Q(y) is a 3 × 3 symmetric positive definite matrix, b(y) is a 3 × 1
vector, and c(y) is a scalar. Clearly, this function is valid only locally in the
neighborhood of y, implying that Q, b, and c depend on y.

Example 6.1 (quadratic approximation of squared distances). In this
example, we show how different squared distances can be brought into the
form of (6.11). For the squared point-to-point distance, we can write

d2(y, X) = ‖y − x∗‖2
2 = (y − x∗)T(y − x∗) = yTy − 2yTx∗ + x∗Tx∗;

hence, Q(y) = I, b(y) = −2x∗, and c(y) = x∗Tx∗. For the squared point-to-
plane distance,

130 6 In the Rigid Kingdom

d2(y, X) = 〈N, y − x∗〉2 = (NTy − NTx∗)2

= (NTy)2 − 2NTyNTx∗ + (NTx∗)2

= yT(NNT)y − 2(NNTx∗)Ty + (NTx∗)2;

hence, Q(y) = NNT, b(y) = −2NNTx∗, and c(y) = (NTx∗)2.

We can plug this quadratic form into the ICP objective function (6.7), ob-
taining

d(RY + t, X) =
∑

y′∈RY +t

d2(y′, X) =
∑

y′∈RY +t

y′TQ(y′)y + b(y′)Ty′ + c(y′)

=
∑

y∈Y

(Rq + t)TQ(Ry + t)(Ry + t) + b(Ry + t)T(Ry + t) + c(Ry + t),

which should be minimized with respect to the rigid transformation (R, t).
This function is hard to minimize, as it involves Q(Ry + t), b(Ry + t) and

c(Ry + t), whose functional dependence on R and t might be complicated due
to the possible changes in the correspondence between Y and X . However,
assuming small motion (i.e., the rigid transformation is nearly the identity
transformation, RY + t ≈ Y), we can omit this dependence, writing

d(RY + t, X) ≈
∑

y∈Y

(Ry + t)TQ(y)(Ry + t) + b(y)T(Ry + t) + c(y)

(the scalar c(y) can be discarded, as it does not depend on R or t). The new
objective appears much easier to minimize, as it is quadratic in R and t. Yet, if
we use the elements of R as our optimization variables, we have to enforce the
orthonormality of R in order to guarantee that it remains a rotation matrix.
This makes optimization cumbersome.

An alternative is to use the three rotation angles θ = (θ1, θ2, θ3) as opti-
mization variables. In this case, the objective function becomes nastier, due to
the complicated dependence of R on θ, which involves trigonometric functions,

R =

⎛

⎝
1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎞

⎠

⎛

⎝
cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎞

⎠

⎛

⎝
cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎞

⎠ .

At this point, to our help comes the fact that the small motion assumption
implies in particular a small rotation, θ � 1. Hence, using the first-order
Taylor approximations cos θ ≈ 1 and sin θ ≈ θ, we can linearize the rotation
matrix R as follows:

R ≈

⎛

⎝
1 θ1 −θ2

−θ1 1 θ3

θ2 −θ3 1

⎞

⎠ . (6.12)

6.4 Rigid correspondence 131

Using the linearized R, our objective becomes quadratic with respect to the
six rigid isometry parameters θ = (θ1, θ2, θ3) and t = (t1, t2, t3), and we can
use the Newton method to minimize it.

However, in spite of our small motion assumption, in practice the Newton
method may find a large transformation as the minimizer of d(RY + t, X).
Because our approximation to d2(y, X) is valid only locally, it may increase
the objective function. In such cases, we should only make a small step in the
direction of the transformation. In order to do it in a consistent way, let (R′, t′)
be a small transformation that when applied sequentially η times coincides
with the large transformation (R, t). Formally, this can be written as

Ry + t = R′(· · · (R′(R′y + t′) + t′) · · ·) + t′
︸ ︷︷ ︸

η times

= R′ηy + (R′η−1 + R′η−2 + · · · + R′ + I)t′.

Demanding R′ηy = Ry, one has R′ = R1/η, corresponding with a rotation by
θ/η. Multiplying the equation t = (R′η−1 +R′η−2 + · · ·+R′ + I)t′ by (R′− I)
from the left, one obtains the “telescopic” matrix polynomial

(R′ − I)t = (R′ − I)(R′η−1 + R′η−2 + · · · + R′ + I)t′

= (R′η + R′η−1 + · · · + R′ − R′η−1 − R′η−2 − · · · − I)t′ = (R′η − I)t′,

from where t′ = (R − I)−1(R′ − I)t. This simple relation can be extended to
non-integer values of η as well. The step size η has to be chosen sufficiently
small to guarantee a decrease of the objective function. This can be done
using, for example, the Armijo rule, as was proposed by Mitra et al. This ap-
proach results in a significantly more stable ICP algorithm, exhibiting better
convergence.

6.4 Rigid correspondence

Note that at each iteration of the ICP algorithm where Y is transformed, the
correspondence between X and Y may change and has to be recomputed. Even
in the elegant formulation proposed by Mitra et al., this need is inevitable, as
the parameters Q(y), b(y), and c(y) in the quadratic form (6.11) depend on y
and have to be found again once Y is transformed. The simplest way to solve
this problem is by computing the parameters on demand, i.e., for every point
y ∈ Y ′ at every iteration of the algorithm, we have to find the closest point,

x∗(y) = arg min
x∈X

‖y − x‖2
2.

This sounds like a potentially expensive algorithm. Indeed, if modern ICP
algorithms were implemented this way, they would have been terribly slow.

132 6 In the Rigid Kingdom

Fortunately, there exist techniques for avoiding exhaustively searching over
all points on the surface. Observe that X subdivides R

3 into a collection of
Voronoi cells

V (x) = {y ∈ R
3 : ‖y − x‖2 < ‖y − x′‖2 ∀x′ �= x},

containing all points in R
3 that are closer to x than to any other point on X .

Finding the closest point in X given a query point y can be formulated as
determining the Voronoi cell to which y belongs. This observation motivates
the techniques that use efficient data structures for fast retrieval of the closest
point, without exhaustively searching all points in X . It appears that even
when X is given as a cloud of points, its Voronoi cells are convex polyhedra
with generally complicated shapes, hardly computable efficiently. However,
we can approximate the true Voronoi cells using some simpler shapes. One
of such approaches is based on a hierarchical data structure called the k-
dimensional (or kd) tree [25]. Each node of the kd tree corresponds with a
partition of the space (R3 in our case) by a plane perpendicular to one of the
axes. For example, the root node splits the space into two regions: {x1 < 0}
and {x1 ≥ 0}. The first region is assigned to the left child, whereas the second
region is assigned to the right child. Each child may introduce further splitting,
e.g., {x1 ≥ 0} is divided into {x1 ≥ 0} ∩ {x2 < 1} and {x1 ≥ 0} ∩ {x2 ≥ 1},
and so on. A leaf represents a (possibly unbounded) box-shaped region in R

3.
These boxes approximate the Voronoi cells of X . Using versions of the kd tree
allows finding the approximate nearest neighbor of y in X with logarithmic
complexity [11]. This significantly alleviates the computational burden of the
iterative closest point algorithm.

However, if we use the quadratic form (6.11) as proposed by Mitra et al.,
the need to recompute the correspondence at each iteration for every y ∈ Y ′

still seems somewhat superfluous. Indeed, we never use the correspondence
explicitly. All we need is to find the quadratic form parameters Q, b, and c for
a given query point y. Because the squared distance function d2(y, X) is at
least C0, these parameters vary smoothly and therefore, for a sufficiently small
region around y, the terms Q, b, and c remain nearly constant. Once again,
the idea of hierarchical space partitioning can be exploited here. Leopoldseder
et al. [249] proposed an octree-like structure that recursively splits the space
into eight octants, until the variance of the quadratic form parameters in the
created box-shaped cell falls below a small threshold. Once the tree is pre-
computed for the surface X , it allows the retrieval of Q(y), b(y), and c(y) with
logarithmic complexity.

It is worthwhile noting that all surface-to-surface distances we have dis-
cussed were based on the knowledge of correspondence between the two sur-
faces. We may therefore say that finding the rigid correspondence is the prin-
cipal ingredient of ICP. To emphasize this fact, Rusinkiewicz and Levoy even
suggested the backronym iterative corresponding point for ICP as a replace-
ment for the original iterative closest point [329]. In addition to being in the

6.4 Rigid correspondence 133

core of ICP, correspondence between two objects is required in many other ap-
plications. We defer this discussion to Chapter 12, where the correspondence
problem is explored in the more general non-rigid setting.

As a concluding remark, a few words ought to be said about the initial-
ization of the ICP algorithm. Being a non-convex minimization problem, ICP
may converge to a wrong local minimum if initialized incorrectly. While finding
a good initialization is considered a largely open problem typically solved ad
hoc, in the past few years guaranteed globally optimal initialization schemes
were proposed. In [170], Gelfand et al. address this issue using a branch and
bound global optimization algorithm to find the initial rigid correspondence.
A variant of this approach is proposed in [251] by Li and Hartley.

Suggested reading

A good overview of shape similarity techniques can be found in Veltkamp’s
papers [387, 388, 373]. Moment-based shape descriptors are reviewed in
[409, 320]. The reader is also referred to [150] for an interesting discussion
on reconstructing a shape from its moments. The review paper [329] discusses
efficient variants of the ICP algorithm and shows their convergence in different
scenarios. Convergence is also discussed in [317]. An interesting paper by Ezra
et al. [154] presents lower and upper bounds on the number of iterations in ICP
algorithms. A tighter lower bound as well as a probabilistic upper bound are
presented in [10]. In [318], Pottmann et al. introduce a “correspondence-less”
approach to rigid surface registration based on their quadratic approximation
to the squared point-to-surface distance previously discussed in this chapter.
Another interesting “correspondence-less” approach is proposed by Charpiat
et al. [98], where a smooth approximation to the Hausdorff distance is studied.

Software

A C++ implementation of ICP is available in the VTK and ITK toolboxes.

Problems

6.1. Show that the rotation matrix aligning the principal directions with the
axes is the diagonalizing matrix of Σ.

6.2. Try to characterize the class of surfaces completely described by a finite
set of their geometric moments {mpqr}N

p,q,r=0.

6.3.� Derive a consistent way to discretize the geometric moment integral.

134 6 In the Rigid Kingdom

6.4. Discuss the use of the three-dimensional Fourier harmonics as a replace-
ment to the geometric moments. How can the translation invariance of Fourier
harmonics be helpful?

6.5.� In reality, finite-precision arithmetics are used to compute the moments.
Assume that the coordinates of the surface points are represented with the
absolute error of, say, ε = 10−8. What will be the relative error of mpqr? How
can this complicate the use of geometric moments?

6.6 (Research question). Suppose the surface is acquired each time from a
different known viewing angle, with partial occlusions. Given the signature of
the surface moments for each angle, what can be said about the moments of
the entire surface? Can it be reconstructed from such partial observations?

6.7. Derive the distance in equation (6.10) and show that it is a second-order
approximation to the true point-to-surface distance.

6.8. Prove that the squared point-to-surface distance is not C2 for query points
located on the surface’s medial axis.

6.9. Derive the quadratic form parameters Q, b, and c for the second-order
point-to-surface distance (as was shown in Example 6.1). Compare them with
the point-to-point and point-to-plane distances. What can be said about the
convexity of the quadratic form?

6.10.� Derive a closed-form solution for the optimal rigid isometry (R, t) min-
imizing the ICP objective function with the squared point-to-point distance.

Notes
1The earliest record of this popular fairy tale originated in China in the mid-ninth

century. There, the fair Ye Xian had the smallest foot in the kingdom, a synonym of
beauty in the Chinese culture. In the West, the most renowned version of Cinderella
belongs, perhaps, to the pen of the French author Charles Perrault (1628–1703)
[311].

2In order to include reflections, we can multiply x′ by a diagonal matrix contain-
ing ±1’s along the diagonal.

3In statistics, Σ is called the covariance matrix, and the process of finding the
variance-maximizing orthogonal directions is usually referred to as principal compo-
nent analysis (PCA) or the Karhunen-Loéve transform (KLT). PCA allows one to
construct a low-dimensional approximation of a multi-dimensional random process
that captures its “most significant” part (in the L2 sense). The invention of principal
component analysis is usually attributed to the American statistician and economist
Harold Hotelling [210], though similar ideas date back to Pearson [308].

4Such functions are called Dirac’s delta functions. If the reader feels uncomfort-
able with such a formulation, he or she can think of the surface X as of a thin
shell; in this case, f takes some constant value for x belonging to the shell, and 0

Notes 135

otherwise. The constant is selected in such way that
∫

X
f(x)dx = 1. For vanishing

shell thickness, a delta function is obtained.
5The problem of reconstructing the surface from its moments is often called the

inverse moment problem, though in the signal processing jargon, the term synthesis
is more adequate [150]. Because the polynomial basis {ψpqr(x) = (x1)p(x2)q(x3)r} is
non-orthogonal, reconstruction of a surface from its geometric moments requires the
so-called biorthonormal basis, which behaves badly in this case. For this reason, in
applications where reconstruction is important, geometric moments are of little use.
The preference is given to orthonormal bases that allow direct reconstruction of the
surface according to f =

∑
mpqrψpqr =

∑
〈ψpqr, f〉ψpqr. An example of such type

of moments are the Legendre moments, which follow in spirit the Fourier transform
[376].

6Readers familiar with the Nyquist-Shannon sampling theorem will find such a
statement analogous to saying that a band-limited signal can be fully represented
by its discrete sampling.

7The closest point is sometimes referred to as the normal footpoint, as the line
segment connecting x∗ and y is always perpendicular to the surface.

8Some surfaces may have umbilical points, where the principal curvature direc-
tions are not well-defined. In this case, we may take any two orthogonal vectors
T1, T2 in the tangent plane.

9More precisely, the second-order approximant to d2 does not always exist. At
the points located on the surface’s medial axis, d2 is not C2. Such points have to be
detected and excluded in order not to jeopardize the convergence of ICP algorithms
based on quadratic surface approximation.

10Under certain conditions, Ezra et al. [154] show that ICP converges and present
a bound on the number of iterations.

	In the Rigid Kingdom
	Moments of joy, moments of sorrow
	Iterative closest point algorithms
	Enter numerical optimization
	Rigid correspondence
	Suggested reading
	Software
	Problems
	Notes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

