
Computational Topology Simplicial Complexes Afra Zomorodian

Combinatorics is the slums of topology.
— J. H. C. Whitehead (attr.)

3 Simplicial Complexes
In the first lecture, we looked at concepts from point set topology, the branch of topology that studies continuity from
an analytical point of view. This view does not have a computational nature: we cannot represent infinite point sets
or their associated infinite open sets on a computer. Starting with this lecture, we will look at concepts from another
major branch of topology: combinatorial topology. This branch also studies connectivity, but does so by examining
constructing complicated objects out of simple blocks, and deducing the properties of the constructed objects from the
blocks. While our view of the world–our ontology–will be mostly combinatorial in nature, we will see concepts from
point set topology reemerging under disguise, and we will be careful to expose them!

In this lecture, we begin by learning about simple building blocks from which we may construct complicated
spaces. Simplicial complexes are combinatorial objects that represent topological spaces. With simplicial complexes,
we separate the topology of a space from its geometry, much like the separation of syntax and semantics in logic.
Given the finite combinatorial description of a space, we are able to count, and the miracle of combinatorial topology
is that counting alone enables us to make statements about the connectivity of a space. We shall experience a first
instance of this marvelous theory in the Euler characteristic. This topological invariant gives a simple algorithm for
classifying 2-manifolds, turning our existential classification from the last lecture into a computational method.

3.1 Geometric Definition
We begin with a definition of simplicial complexes that seems to mix geometry and topology. Combinations allow us
to represent regions of space with very few points. In other words, allow us to describe simple cells which become our
building blocks later.

Definition 3.1 (combinations) Let S = {p0, p1, . . . , pk} ⊆ Rd. A linear combination is x =
∑k

i=0 λipi, for some
λi ∈ R. An affine combination is a linear combination with

∑k
i=0 λi = 1. A convex combination is a an affine

combination with λi ≥ 0, for all i. The set of all convex combinations is the convex hull.

You may have seen the concept of independence in studying linear algebra.

Definition 3.2 (independence) A set S is linearly (affinely) independent if no point in S is a linear (affine) combina-
tion of the other points in S.

Figure 1 shows the linear, affine, and convex combinations of three affinely independent points in R3. We may now
define our basic building block.

Definition 3.3 (k-simplex) A k-simplex is the convex hull of k +1 affinely independent points S = {v0, v1, . . . , vk}.
The points in S are the vertices of the simplex.

A k-simplex is a k-dimensional subspace of Rd, dim σ = k. We show low-dimensional simplices with their names in
Figure 2. Since all the points defining a simplex are affinely independent, so is any subset of them. This causes the
simplex to have an interesting structure: it is composed of simplices of lower-dimension, or its faces.

Figure 1. Combinations. The linear combinations of three affinely independent points in R3 covers the whole space. The affine combinations fill
the plane defined by the three points. The convex hull is the triangle defined by the three points.
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Figure 2. k-simplices, for each 0 ≤ k ≤ 3.

Definition 3.4 (face, coface) Let σ be a k-simplex defined by S = {v0, v1, . . . , vk}. A simplex τ defined by T ⊆ S
is a face of σ and has σ as a coface. The relationship is denoted with σ ≥ τ and τ ≤ σ. Note that σ ≤ σ and σ ≥ σ.

Note that a simplex is always a face of itself by this definition.
We attach simplices together to represent spaces. This attaching is very much like using Lego blocks to build

castles: we can only attach Lego blocks on the special interfaces. Similarly, we may only attach simplices along their
special interfaces: their faces. The following definition formally defines our structures, which we call complexes.

Definition 3.5 (simplicial complex) A simplicial complex K is a finite set of simplices such that

1. every face of a simplex in K is in K, and

2. the non-empty intersection of any two simplices of K is a face of each of them.

The dimension of K is dim K = max{dim σ | σ ∈ K}. The vertices of K are the zero-simplices in K. A simplex is
principal if it has no proper coface in K.

Here, proper has the same definition as for sets. So, a simplicial complex is a collection of simplices that fit together
nicely, as shown in Figure 3(a), as opposed to simplices in 3(b).

(a) The middle triangle shares an edge with the triangle on the left,
and a vertex with the triangle on the right.

(b) In the middle, the triangle is missing an edge. The simplices on
the left and right intersect, but not along shared simplices.

Figure 3. A simplicial complex (a) and disallowed collections of simplices (b).

Recall that each k-simplex is a k-dimensional subspace of Rd. By putting them together nicely in a simplicial
complex, we have made sure that the resulting complex is also a subspace of Rd. In other words, we now have a
simplicial complex is a combinatorial representation of a topological space.

Definition 3.6 (underlying space) The underlying space |K| of a simplicial complex K is |K| = ∪σ∈Kσ.

|K| is a topological space as we can induce a topology on it from Rd. We defined two topological spaces to be
equivalent if there was a homeomorphism mapping one to the other. We may now define two simplicial complexes
to be equivalent if their corresponding underlying spaces are homeomorphic. We begin at the level of simplices
and show that any two k-simplices are homeomorphic. While this is intuitively clear, it’s nice to define an explicit
homeomorphism which is useful in practice.
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Definition 3.7 (barycentric coordinates) Let σ be the k-simplex defined on S = {v0, v1, . . . , vk}. Then we may
write an point x ∈ σ as a linear sum

x =
k∑

i=0

λivi,

where λi ≥ 0 and
∑

i λi = 1. The λi are the barycentric coordinates of x.

The definition follows easily from the definition of the k-simplex as each point x ∈ σ is a convex combination. In this
manner, we can coordinatize all points in a simplex, provided we put a fixed ordering on the vertices of the simplex.
We use barycentric coordinates to map one simplex to another.

Lemma 3.1 All k-simplices are homeomorphic.

Proof: Let σ be the k-simplex defined on S = {v0, v1, . . . , vk} and τ , the k-simplex defined on T = {v′0, v′1, . . . , v′k}.
Let f : S → T be any bijection that maps the vertices of σ to those of τ . We need to extend this discrete map to a
continuous map g on all of σ. We define g : σ → τ as follows. Take any point x ∈ σ and write it in terms of its
barycentric coordinates: x =

∑k
i=0 λivi. Then we simply map g(x) to the point y =

∑k
i=0 λiv

′
i in τ , that is, the point

in τ that has the same coordinates as x. It is now easy to show that this map is a homeomorphism. This map is often
called a linear or simplicial map. �

Using this lemma, we may prove the following.

Theorem 3.1 Let K and L be simplicial complexes, and f be a bijection from the vertices of K to those of L such
that {v0, . . . , vk} spans a simplex in K iff {f(v0), . . . , f(vk)} spans a simplex of L. Then, |K| ≈ |L|.

Proof: We give a sketch of the proof here. We map each simplex using a linear map and the piece-wise linear maps
agree on the faces of simplices and are continuous there. Similarly, the inverse is continuous. �

We may now define what we mean by equivalent simplicial complexes.

Definition 3.8 (isomorphism) Two simplicial complexes K and L are isomorphic (or simplicially homeomorphic) iff
|K| ≈ |L|. We denote this by K ∼= L.

3.2 Size of a Simplex
As already mentioned, combinatorial topology derives its power from counting. Now that we have a finite description
of a space, we can count easily. So, let’s use Figure 2 to count the number of faces of a simplex. For example, an edge
has two vertices and an edge as its faces (recall that a simplex is a face of itself.) A tetrahedron has four vertices, six
edges, four triangles, and a tetrahedron as faces. These counts are summarized in Table 1. What should the numbers
be for a 4-simplex? The numbers in the table may look really familiar to you. If we add a 1 to the left of each row,
we get Pascal’s triangle, as shown in Figure 4. Recall that Pascal’s triangle encodes the binomial coefficients: the
number of different combinations of l objects out of k objects or

(
k
l

)
. Here, we have k + 1 points representing an

k-simplex, any l + 1 of which defines a l-simplex. To make the relationship complete, we define the empty set ∅ as
the (−1)-simplex. This simplex is part of every simplex and allows us to add a column of 1’s to the left side of Table 1
to get Pascal’s triangle. It also allows us to eliminate the word non-empty in the second condition of Definition 3.5, as

k/l 0 1 2 3
0 1 0 0 0
1 2 1 0 0
2 3 3 1 0
3 4 6 4 1
4 ? ? ? ?

Table 1. Number of l-simplices in each k-simplex.
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Figure 4. If we add a 1 to the left side of each row in Table 1, we get Pascal’s triangle.

the empty set is part of both simplices for non-intersecting simplices. To get the total size of a simplex, we sum each
row of Pascal’s triangle. A k-simplex has

(
k+1
l+1

)
faces of dimension l and

k∑
l=−1

(
k + 1
l + 1

)
=

k+1∑
l=0

(
k

l

)
= 2k+1,

faces in total, according to the binomial theorem. A simplex, therefore, is a very large object. Mathematicians often
do not find it appropriate for “computation”, when computation is being done by hand. Simplices are very uniform
and simple in structure, however, and therefore provide an ideal computational gadget for computers.

3.3 Abstract Definition
Our discussion on the size of a simplex shows that we can view a simplex as a set along and its power set (the collection
of all its subsets. This view of a simplex is attractive because it avoids references to geometry in defining a simplicial
complex. It also should give you eerie feelings of déjà vu, as it matches the definition of a topology

Definition 3.9 (abstract simplicial complex) An abstract simplicial complex is a set S of finite sets such that if A ∈
S, so is every subset of A. We say A ∈ S is an (abstract) k-simplex of dimension k if |A| = k + 1.

The face and co-face definitions follow as before. Note that the definition automatically allows for ∅ as a (−1)-
simplex. We will often abuse notation and refer to S as the complex. The abstract definition affirms the notion that
topology only cares about how the simplices are connected, and not how they are placed within a space. We now relate
this abstract set-theoretic definition to the geometric one by extracting the combinatorial structure of a (geometric)
simplicial complex.

Definition 3.10 (vertex scheme) Let K be a simplicial complex with vertices V and let S be the collection of all
subsets {v0, v1, . . . , vk} of V such that the vertices v0, v1, . . . , vk span a simplex of K. The collection S is called the
vertex scheme of K.

Clearly, the set K and the the collection S together form an abstract simplicial complex. To compare abstract simplicial
complexes, we need a notion of equivalence.

Definition 3.11 (isomorphism) Let K1,K2 be abstract simplicial complexes with vertices V1, V2 and subset collec-
tions S1, S2, respectively. An isomorphism between K1,K2 is a bijection ϕ : V1 → V2, such that the sets in S1 and
S2 are the same under the renaming of the vertices by ϕ and its inverse.

Compare this definition with that of isomorphisms defined for simplicial complexes in Definition 3.8. We may now
fully define the relationship between geometric and abstract simplicial complexes.

Theorem 3.2 Every abstract complex S is isomorphic to the vertex scheme of some simplicial complex K. Two
simplicial complexes are isomorphic iff their vertex schemes are isomorphic as abstract simplicial complexes.

The second statement in the theorem follows directly from Theorem 3.1, since the isomorphism at the abstract level
may be extended into a simplicial map to show homeomorphism between the underlying spaces. We may easily show
the first statement by constructing K as a subcomplex of the convex hull of the standard vectors in Rd, where d is the
number of vertices in K.
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Definition 3.12 (Geometric Realization) If an abstract simplicial complex S is isomorphic to the vertex scheme of a
simplicial complex K, we call K a geometric realization of S. A realization is uniquely determined up to an linear
isomorphism as defined before.

Having constructed a finite simplicial complex, we may divide it into topological and geometric components. The for-
mer will be a abstract simplicial complex, a purely combinatorial object, easily stored and manipulated in a computer
system. The latter is a map of the vertices of the complex into the space in which the complex is realized. Again, this
map is finite, and can be approximately represented in a computer using a floating point representation.

Example 3.1 (Wavefront OBJ format) This representation of a simplicial complex translates word for word into
most common file formats for storing surfaces. One standard format is the OBJ format from Wavefront. The format
first describes the map which places the vertices in R3. A vertex with location (x, y, z) ∈ R3 gets the line “v x y z”
in the file. After specifying the map, the format describes an simplicial complex by only listing its triangles, which
are the principal simplices (see Definition 3.5.) The vertices are numbered according to their order in the file and
numbered from 1. A triangle with vertices v1, v2, v3 is specified with line “f v1 v2 v3”. The description in an OBJ file
is often called a “triangle soup”, as the topology is specified implicitly and must be extracted.

v -0.269616 0.228466 0.077226
v -0.358878 0.240631 0.044214
v -0.657287 0.527813 0.497524
v 0.186944 0.256855 0.318011
v -0.074047 0.212217 0.111664
...
f 19670 20463 20464
f 8936 8846 14300
f 4985 12950 15447
f 4985 15447 15448
...

Figure 5. Portions of an OBJ file specifying the surface of the Stanford Bunny.

3.4 Subcomplexes
Recall that a simplex is the power set of its simplices. Similarly, a natural view of a simplicial complex is that it is
special subset of the power set of all its vertices. The subset is special because of the requirements in Definition 3.9.
Consider the small complex in Figure 6(a). The diagram 6(b) shows how the simplices connect within the complex:
it has a node for each simplex, and an edge indicating a face-coface relationship. The marked principal simplices are
the “peaks” of the diagram. This diagram is, in fact, a poset.

Definition 3.13 (poset) Let S be a finite set. A partial order is a binary relation ≤ on S that is reflexive, antisymmet-
ric, and transitive. That is for all x, y, z ∈ S,

a

d

ec

b
(a) A small complex

a b c

ac bc

φ

ab

abc

d e

decd

(b) Poset of the small complex, with principal
simplices marked.

φ

φ

(c) An abstract poset: the “water level” of the
poset is defined by principal simplices.

Figure 6. Poset view of a simplicial complex
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1. x ≤ x,

2. x ≤ y and y ≤ x implies x = y, and

3. x ≤ y and y ≤ z implies x ≤ z.

A set with a partial order is a partially ordered set or poset for short.

It is clear from the definition that the face relation on simplices is a partial order. Therefore, the set of simplices
with the face relation forms a poset. We often abstractly imagine a poset as in Figure 6(c). The set is fat around its
waist because the number of possible simplices

(
n
k

)
is maximized for k ≈ n/2. The principal simplices form a level

beneath which all simplices must be included. Therefore, we may recover a simplicial complex by simply storing its
principal simplices, as in the case with triangulations in Example 3.1. This view also gives us intuition for extensions
of concepts in point set theory to simplicial complexes. A simplicial complex may be viewed as a closed set (it is a
closed point set, if it is geometrically realized.)

Definition 3.14 (subcomplex, link, star) A subcomplex is a simplicial complex L ⊆ K. The smallest subcomplex
containing a subset L ⊆ K is its closure, Cl L = {τ ∈ K | τ ≤ σ ∈ L}. The star of L contains all of the cofaces of
L, St L = {σ ∈ K | σ ≥ τ ∈ L}. The link of L is the boundary of its star, Lk L = Cl St L− St (Cl L− {∅}).

Figure 7 demonstrates these concepts within the poset for our complex in Figure 6. A subcomplex is the analog of a
subset for a simplicial complex. Given a set of simplices, we take all the simplices “below” the set within the poset
to get its closure 7(a), and all the simplices “above” the set to get its star 7(b). The face relation is the partial order
that defines “above” and “below”. Most of the time, the star of a set is an open set (viewed as a point set) and not a
simplicial complex. The star corresponds to the notion of a neighborhood for a simplex, and like a neighborhood, it
is open. The closure operation completes the boundary of a set as before, making the star a simplicial complex 7(b).
The link operation gives us the boundary. In our example, Cl {c, e} − ∅ = {c, e}, so we remove the simplices from
the light regions from those in the dark region in 7(b) to get the link 7(c). Therefore, the link of c and e is the edge ab
and the vertex d. Check on Figure 6(a) to see if this matches your intuition of what a boundary should be.

3.5 Triangulations
The primary reason we study simplicial complexes is to represent manifolds.

Definition 3.15 (triangulation) A triangulation of a topological space X is a simplicial complex K such that
|K| ≈ X.

For example, the boundary of a 3-simplex (tetrahedron) is homeomorphic to a sphere and is a triangulation of the
sphere, as shown in Figure 8.

� The term “triangulation” is used by different fields with different meanings. For example, in computer graphics,
the term most often refers to “triangle soup” descriptions of surfaces. The finite element community often refers

to triangle soups as a mesh, and may allow other elements, such as quadrangles, as basic building blocks. In areas,
three-dimensional meshes composed of tetrahedra are called tetrahedralizations. Within topology, a triangulation
refers to complexes of any dimension, however.

a b c

ac bc

φ

ab

d e

de

abc

cd

(a) Cl {bc, d}

a b c

ac bc

φ

ab

d e

de

abc

cd

(b) St {c, e} (light) and its closure Cl St {c, e} (dark)

a b c

ac bc

φ
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d e

de

abc

cd

(c) Lk {c, e}

Figure 7. Closure, star, and link of simplices
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~~

Figure 8. The boundary of a tetrahedron is a triangulation of a sphere, as its underlying space is homeomorphic to the sphere.

3.6 Orientability
We had a definition of orientability in the notes for the first lecture that depended on differentiability. We now extend
this definition to simplicial complexes, which are not smooth. This extension further affirms that orientability is a
topological property not dependent on smoothness.

Definition 3.16 (orientation) Let K be a simplicial complex. An orientation of a k-simplex σ ∈ K,
σ = {v0, v1, . . . , vk}, vi ∈ K is an equivalence class of orderings of the vertices of σ, where

(v0, v1, . . . , vk) ∼ (vτ(0), vτ(1), . . . , vτ(k))

are equivalent orderings if the parity of the permutation τ is even. We denote an oriented simplex, a simplex with an
equivalence class of orderings, by [σ].

Note that the concept of orientation derives from that fact that permutations may be partitioned into two equivalence
classes (if you have forgotten these concepts, you may review permutations and partitions in the notes from lecture 1
and 2, respectively.) Orientations may be shown graphically using arrows, as shown in Figure 9. We may use oriented
simplices to define the concept of orientability to triangulated d-manifolds.

Definition 3.17 (orientability) Two k-simplices sharing a (k − 1)-face σ are consistently oriented if they induce
different orientations on σ. A triangulable d-manifold is orientable if all d-simplices can be oriented consistently.
Otherwise, the d-manifold is non-orientable

Last lecture, we saw two basic non-orientable 2-manifolds: the Klein bottle and the projective plane. Our exposition
shows that non-orientable manifolds can exist in any dimensions, however.

Example 3.2 (Rendering) The surface of a three-dimensional object is a 2-manifold and may be modeled with a
triangulation in a computer. In computer graphics, these triangulations are rendered using light models that assign
color to each triangle according to how it is situation with respect to the lights in the scene, and the viewer. To do this,
the model needs the normal for each triangle. But each triangle has two normals pointing in opposite directions. To
get a correct rendering, we need the normals to be consistently oriented.

vertex

a

edge

a b
c

a

b

tetrahedron

a

b

c

d

a [a, b]
triangle
[a, b, c] [a, b, c, d]

Figure 9. Oriented k-simplices, 0 ≤ k ≤ 3. The orientation on the tetrahedron is shown on its faces.
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3.7 Euler Characteristic
Having seen orientability for simplicial surfaces, we finish this lecture by looking at our first topological invariant.

Definition 3.18 (invariant) A (topological) invariant is a map that assigns the same object to spaces of the same
topological type.

Note that an invariant may assign the same object to spaces of different topological type. In other words, an invariant
need not be complete. All that is required by the definition is that if the spaces have the same type, they are mapped
to the same object. Generally, this characteristic of invariants implies their utility in contrapositives: if two spaces
are assigned different objects, they have different topological types. On the other hand, if two spaces are assigned the
same object, we usually cannot say anything about them. Let us formally state these statements for an invariant f :

X ≈ Y =⇒ f(X) = f(Y)
f(X) 6= f(Y) =⇒ X 6≈ Y (contrapositive)
f(X) = f(Y) =⇒ nothing

If f(X) = f(Y) =⇒ X ≈ Y, the invariant is complete.

The last statement is the converse of the first statement, the definition of an invariant. A good incomplete invariant
will have enough differentiating power to be useful through contrapositives. Here, we introduce a famous invariant,
the Euler characteristic.

Definition 3.19 (Euler characteristic) Let K be a simplicial complex and si = |{σ ∈ K | dim σ = i}|. The Euler
characteristic χ(K) is

χ(K) =
dim K∑
i=0

(−1)isi (1)

While it is defined for a simplicial complex, the Euler characteristic is an integer invariant for |K|, the underlying
space of K. Given any triangulation of a space M, we always will get the same integer, which we will call the Euler
characteristic of that space χ(M).

3.8 Algorithm for Classifying 2-Manifolds
Armed with triangulations, orientability, and the Euler characteristic, we return to 2-manifolds to convert our “ex-
istential” proof from last lecture to a computational one. We begin with calculating the Euler characteristic for the
basic surfaces from the last lecture. We have a triangulation of a sphere S2 in Figure 8, so χ(S2) = 4 − 6 + 4 = 2.
To compute the Euler characteristic of the other manifolds, we must build triangulations for them. This is simple,
however, by triangulating the diagrams for constructing flat 2-manifolds from the last lecture, as in Figure 10(a). This
triangulation gives us χ(T2) = 9− 27 + 18 = 0. We may complete the table in Figure 10(b) in a similar fashion. As
χ(T2) = χ(K2) = 0, the Euler characteristic by itself is not powerful enough to differentiate between surfaces.

0

0 1 2 0

6 7 8 6

0 1 2

3 4 5 3

(a) A triangulation for the diagram of the torus T2

2-Manifold χ

Sphere S2 2
Torus T2 0
Klein bottle K2 0
Projective plane RP2 1

(b) The Euler characteristics of our basic 2-manifolds

Figure 10. A triangulation of the diagram of the torus T2
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Last lecture, we also discussed constructing more complicated surfaces using the connected sum. Suppose we
form the connected sum of two surfaces M1, M2 by removing a single triangle from each, and identifying the two
boundaries. Clearly, the Euler characteristic should be the sum of the Euler characteristics of the two surfaces, minus
2 for the two missing triangles. In fact, this is true for arbitrary shaped disks.

Theorem 3.3 For compact surfaces M1, M2, χ(M1 # M2) = χ(M1) + χ(M2)− 2.

For a compact surface M, let gM be the connected sum of g copies of M. Combining this theorem with the table in
Figure 10(b) we get the following.

Corollary 3.1 χ(gT2) = 2− 2g and χ(gRP2) = 2− g.

These surfaces, along with the sphere, form the equivalence classes of 2-manifolds discussed in the last lecture.

Definition 3.20 (genus) The connected sum of g tori is called a surface with genus g.

The genus refers to how many “holes” the multi-donut surface has. We are now ready to give a complete answer to
the homeomorphism problem for closed compact 2-manifolds.

Theorem 3.4 (Homeomorphism problem of 2-manifolds) Closed compact surfaces M1 and M2 are homeomor-
phic, M1 ≈ M2 iff

1. χ(M1) = χ(M2) and

2. either both surfaces are orientable or both are non-orientable.

Observe that the theorem is “if and only if”. In other words, the Euler characteristic is complete for 2-manifolds.
We can easily compute the Euler characteristic of any 2-manifold. Computing orientability is also easy by orienting
one triangle and “spreading” the orientation throughout the manifold if it is orientable. Therefore, we have a full
computational method for classifying 2-manifolds. As we shall see in the future lectures, the problem is much harder
in higher dimensions, forcing us to resort to more elaborate machinery.
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It is by logic we prove, it is by intuition that we invent.
— Henri Poincaré(1854–1912)

6 Homology
In Lecture 3, we learned about a combinatorial method for representing spaces. In Lecture 4, we studied groups and
equivalence relations implied by their normal subgroups. In this lecture, we look at a combinatorial and computable
functor called homology that gives us a finite description of the topology of a space. Homology groups may be re-
garded as an algebraization of the first layer of geometry in cell structures: how cells of dimension n attach to cells
of dimension n− 1 [1]. Mathematically, the homology groups have a less transparent definition than the fundamental
group, and require a lot of machinery to be set up before any calculations. We focus on a weaker form of homology,
simplicial homology, that both satisfies our need for a combinatorial functor, and obviates the need for this machinery.
Simplicial homology is defined only for simplicial complexes, the spaces we are interested in. Like the Euler charac-
teristic, however, homology is an invariant of the underlying space of the complex. Indeed, the invariance of the Euler
characteristic is often derived from the invariance of homology.

Homology groups, unlike the fundamental group, are abelian. In fact, the first homology group is precisely the
abelianization of the fundamental group. We pay a price for the generality and computability of homology groups:
homology has less differentiating power than homotopy. Once again, however, homology respects homotopy classes,
and therefore, classes of homeomorphic spaces.

6.1 Chains and Cycles
To define homology groups, we need simplicial analogs of paths and loops. Let K be a simplicial complex. Recall
oriented simplices from Lecture 3. We create the chain group of oriented simplices on the complex.

Definition 6.1 (chain group) The kth chain group of a simplicial complex K is 〈Ck(K),+〉, the free abelian group
on the oriented k-simplices, where [σ] = −[τ ] if σ = τ and σ and τ have different orientations. An element of Ck(K)
is a k-chain,

∑
q nq[σq], nq ∈ Z, σq ∈ K.

We often omit the complex in the notation. A simplicial complex has a chain group in every dimension. As stated
earlier, homology examines the connectivity between two immediate dimensions. To do so, we define a structure-
relating map between chain groups.

Definition 6.2 (boundary homomorphism) Let K be a simplicial complex and σ ∈ K, σ = [v0, v1, . . . , vk]. The
boundary homomorphism ∂k : Ck(K) → Ck−1(K) is

∂kσ =
∑

i

(−1)i[v0, v1, . . . , v̂i, . . . , vn], (1)

where v̂i indicates that vi is deleted from the sequence.

It is easy to check that ∂k is well-defined, that is, ∂k is the same for every ordering in the same orientation.

Example 6.1 (boundaries) Let us take the boundary of the simplices in Figure 1. .

vertex

a

edge

a b
c

a

b

tetrahedron

a

b

c

d

a [a, b]
triangle
[a, b, c] [a, b, c, d]

Figure 1. k-simplices, 0 ≤ k ≤ 3. The orientation on the tetrahedron is shown on its faces.
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• ∂1[a, b] = b− a.

• ∂2[a, b, c] = [b, c]− [a, c] + [a, b] = [b, c] + [c, a] + [a, b].

• ∂3[a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c].

Note that the boundary operator orients the faces of an oriented simplex. In the case of the triangle, this orientation
corresponds to walking around the triangle on the edges, according to the orientation of the triangle.

If we take the boundary of the boundary of the triangle, we get:

∂1∂2[a, b, c] = [c]− [b]− [c] + [a] + [b]− [a] = 0. (2)

This is intuitively correct: the boundary of a triangle is a cycle, and a cycle does not have a boundary. In fact, this
intuition generalizes to all dimensions.

Theorem 6.1 ∂k−1∂k = 0, for all k.

Proof: The proof is elementary.

∂k−1∂k[v0, v1, . . . , vk] = ∂k−1

∑
i

(−1)i[v0, v1, . . . , v̂i, . . . , vk]

=
∑
j<i

(−1)i(−1)j [v0, . . . , v̂j , . . . , v̂i, . . . , vk]

+
∑
j>i

(−1)i(−1)j−1[v0, . . . , v̂i, . . . , v̂j , . . . , vk]

= 0,

as switching i and j in the second sum negates the first sum. �

The boundary operator connects the chain groups into a chain complex C∗:

. . . → Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → . . . .

with ∂k∂k+1 = 0 for all k. For generality, we often define null boundary operators in dimensions where the domain
or codomain of the boundary operator is empty, e.g. ∂0 ≡ 0. A chain complex C∗ should be viewed as a single object.
Chain complexes are common in homology, but this particular chain complex is one of two we will see in our class.

The boundary operator also allows us to define subgroups of Ck: the group of cycles and the group of boundaries.

Definition 6.3 (cycle group, boundary group) The kth cycle group is

Zk = ker ∂k

= {c ∈ Ck | ∂kc = ∅}.

A chain that is an element of Zk is a k-cycle. The kth boundary group is

Bk = im ∂k+1

= {c ∈ Ck | ∃d ∈ Ck+1 : c = ∂k+1d}.

A chain that is an element of Bk is a k-boundary. We also call boundaries bounding cycles and cycles not in Bk

non-bounding cycles.

Both subgroups are normal because our chain groups are abelian. The names match the names we had for loops in
the fundamental group, but also extend the notions to other dimensions. Bounding cycles bound higher dimensional
cycles, as otherwise they would not be in the image of the boundary homomorphism. We can think of them as “filled”
cycles, as opposed to “empty” non-bounding cycles. The definitions of the subgroups, along with Theorem 6.1, imply
that the subgroups are nested, Bk ⊆ Zk ⊆ Ck, as shown in Figure 2.
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Ck

Bk−1

Zk−1

Ck−1
δk+1 δkCk+1

0 00

Z k

kB

Z k+1

k+1B

Figure 2. A chain complex with its internals: chain, cycle, and boundary groups, and their images under the boundary operators.

6.2 Simplicial Homology
Chains and cycles are simplicial analogs of the maps called paths and loops in the continuous domain. Following the
construction of the fundamental group, we now need a simplicial version of a homotopy to form equivalent classes of
cycles. Consider the sum of the non-bounding 1-cycle and a bounding 1-cycle in Figure 3. The two cycles z, b have

z b z+b

Figure 3. A non-bounding oriented 1-cycle z ∈ Zk, z 6∈ Bk is added to a oriented 1-boundary b ∈ Bk . The resulting cycle z + b is homotopic to
z. The orientation on the cycles is induced by the arrows.

a shared boundary. The edges in the shared boundary appear twice in the sum z + b with opposite signs, so they are
eliminated. The resulting cycle z + b is homotopic to z: we may slide the shared portion of the cycles smoothly across
the triangles that b bounds. But such homotopies exist for any boundary b ∈ B1. Generalizing this argument to all
dimensions, we look for equivalent classes of z + Bk for a k-cycle. But these are precisely the cosets of Bk in Zk. As
Bk is normal in Zk, the cosets form a group under coset addition.

Definition 6.4 (homology group) The kth homology group is

Hk = Zk/Bk = ker ∂k/im ∂k+1. (3)

If z1 = z2 + Bk, z1, z2 ∈ Zk, we say z1 and z2 are homologous and denote it with z1 ∼ z2.

Homology groups are finitely generated abelian. Therefore, the fundamental theorem of finitely generated abelian
groups from Lecture 4 applies. Homology groups describe spaces through their Betti numbers and the torsion sub-
groups.

Definition 6.5 (kth Betti Number) The kth Betti number βk of a simplicial complex K is βk = β(Hk), the rank of
the free part of Hk.

We can show that βk = rank Hk = rank Zk − rank Bk. The description given by homology is finite, as a n-
dimensional simplicial space has at most n + 1 nontrivial homology groups.

6.3 Understanding Homology
The description provided by homology groups may not be transparent at first. In this section, we look at a few examples
to gain an intuitive understanding of what homology groups capture. Table 1 lists the homology groups of the basic
2-manifolds we first met in Lecture 2. As they are 2-manifolds, the highest non-trivial homology group for any of
them is H2. Torsion-free spaces have homology that does not have a torsion subgroup, that is, terms that are finite
cyclic groups Zm. Most of the spaces we are interested are torsion-free. In fact, any space that is a subcomplex of S3

is torsion-free. We deal with S3 as it is compact. R3 is not compact and creates special cases that need to be handled
in algorithms. To avoid these difficulties, we add a point at infinity and compactify R3 to get S3, the three-dimensional
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2-manifold H0 H1 H2

sphere Z {0} Z
torus Z Z× Z Z
projective plane Z Z2 {0}
Klein bottle Z Z× Z2 {0}

Table 1. Homology of basic 2-manifolds.

sphere. This construction mirrors that of the two-dimensional sphere in Lecture 2. Algorithmically, the one point
compactification of R3 is easy, as we have a simplicial representation of space.

So what does homology capture? For torsion-free spaces in three-dimensions, the Betti numbers (the number of Z
terms in the description) have intuitive meaning as a consequence of the Alexander Duality. β0 measures the number
of components of the complex. β1 is the rank of a basis for the tunnels. As H1 is free, it is a vector-space and β1 is
its rank. β2 counts the number of voids in the complex. Tunnels and voids exist in the complement of the complex in
S3. The distinction might seem tenuous, but this is merely because of our familiarity with the terms. For example, the
complex encloses a void, and the void is the empty space enclosed by the complex.

Using this understanding, we may now examine Table 1. All four spaces have a single component, so H0 = Z
and β0 = 1. The sphere and the torus enclose a void, so H2 = Z and β2 = 1. The non-orientable spaces, on the
other hand, are one-sided and cannot enclose any voids, so they have trivial homology in dimension 2. To see what H1

captures, we look at the diagrams for the 2-manifolds in Figure 4. We may, of course, triangulate these diagrams to
obtain abstract simplicial complexes for computing simplicial homology. For now, though, we assume that whatever
curve we draw on these manifolds could be “snapped” to some triangulation of the diagrams. To understand 1-cycles
and torsion, we need to pay close attention to the boundaries in the diagrams. Recall that a boundary is simply a cycle
that bounds. In each diagram, we have a boundary, simply, the boundary of the diagram! The manner in which this
boundary is labeled determines how the space is connected, and therefore the homology of the space.

It is clear that any simple closed curve drawn on the disk for the sphere is a boundary. Therefore, its homology is
trivial in dimension one. The torus has two classes of non-bounding cycles. When we glue the edges marked ’a’, edge
’b’ becomes a non-bounding 1-cycle and forms a class with all 1-cycles that are homologous to it. We get a different
class of cycles when we glue the edges marked ’b’. Each class has a generator, and each generator is free to generate
as many different classes of homologous 1-cycles as it pleases. Therefore, the homology of a torus in dimension one
is Z× Z and β1 = 2.

There is a 1-boundary in the diagram, however: the boundary of the disk that we are gluing. Going around this
1-boundary, we get the description aba−1b−1. That is, the disk makes the cycle with this description a boundary.
Equivalently, the disk adds the relation aba−1b−1 = 1 to the presentation of the group. But this relation is simply
stating that the group is abelian and we already knew that.

Continuing in this manner, we look at the boundary in the diagram for the projective plane. Going around, we
get the description abab. If we let c = ab, the boundary is c2 and the disk adds the relation c2 = 1 to the group
presentation. We need this substitution as an artifact of using this diagram, which we are using for adding some form
of uniformity to our treatment. The definition of the cross-cap in Conway’s ZIP proof, however, is the one we need
here. In other words, we have a cycle c in our manifold that is non-bounding, but becomes bounding when we go
around it twice. If we try to generate all the different cycles from this cycle, we just get two classes: the class of
cycles homologous to c, and the class of boundaries. But any group with two elements is isomorphic to Z2, hence the

v

(a) Sphere S2

v

v v

v

a a

b

b

(b) Torus T2

v

b

b

a a

v w

w

(c) Projective plane
RP2

v

v

v

v

b

b

a a

(d) Klein bottle K2

Figure 4. Diagrams for basic 2-manifolds.
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description of H1. You should convince yourself of the verity of the description of H1 for the Klein bottle in a similar
fashion.

6.4 Invariance
Like the Euler characteristic, we define homology using simplicial complexes. From the definition, it seems that
homology is capturing extrinsic properties of our representation of a space. We are interested in intrinsic properties
of the space, however. We hope that any two different simplicial complexes K and L with homeomorphic underlying
spaces |K| ≈ |L| have the same homology, the homology of the space itself. Poincaré stated this hope in terms of “the
principal conjecture” in 1904.

Conjecture 6.1 (Hauptvermutung) Any two triangulations of a topological space have a common refinement.

In other words, the two triangulations can be subdivided until they are the same. This conjecture, like Fermat’s last
lemma, is deceptively simple. Papakyriakopoulos verified the conjecture for polyhedra of dimension ≤ 2 in 1943 [7],
and Moı̈se proved it for three-dimensional manifolds in 1953 [5]. Unfortunately, the conjecture is false in higher
dimensions for general spaces. Milnor obtained a counterexample in 1961 for dimensions six and greater using Lens
spaces [4]. Kirby and Siebenmann produced manifold counterexamples in 1969 [2]. The conjecture fails to show the
invariance of homology [8].

To settle the question of topological invariance of homology, a more general theory was introduced, that of singular
homology. This theory is defined using maps on general spaces, thereby eliminating the question of representation.
Homology is axiomatized as a sequence of functors with specific properties. Much of the technical machinery required
is for proving that singular homology satisfies the axioms of a homology theory, and that simplicial homology is
equivalent to singular homology. A result of this theory is the following theorem which states that homology respects
homotopy types, and in turn, topological types.

Theorem 6.2 X ' Y ⇒ H∗(X) = H∗(Y)

Mathematically speaking, this machinery makes homology less transparent than the fundamental group. Algorithmi-
cally, however, simplicial homology is the ideal mechanism to compute topology.

6.5 The Euler-Poincaré Formula
Let’s revisit the Euler characteristic now in our new setting. We may redefine the Euler characteristic over a chain
complex.

Definition 6.6 (Euler characteristic) χ(C∗) =
∑

i(−1)i rank(Ci).

This definition is trivially equivalent to our previous one as the k-simplices are the generators of Ck and rank(Ci) =
|{σ ∈ K | dim σ = i}| in that definition. We now denote the sequence of homology functors as H∗. Then, H∗(C∗) is
a chain complex:

. . . → Hk+1
∂k+1−−−→ Hk

∂k−→ Hk−1 → . . . .

The operators between the homology groups are induced by the boundary operators: we map a homology class to the
class of the boundary of one of its members. According to the new definition, the Euler characteristic of our new chain
is

χ(H∗(C∗)) =
∑

i

(−1)i rank(Hi) =
∑

i

(−1)iβi.

Surprisingly, the homology functor preserves the Euler characteristic of a chain complex.

Theorem 6.3 (Euler-Poincaré) χ(K) = χ(C∗) = χ(H∗(C∗)). That is,
∑

i(−1)isi =
∑

i(−1)iβi, where si =
|{σ ∈ K | dim σ = i}| and βi = rank Hi.

The theorem derives the invariance of the Euler characteristic from the invariance of homology.
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Example 6.2 We know that the Euler characteristic of a sphere is 2. The Euler-Poincaré relation tells us where this 2
comes from. According to the relation, χ(S2) = β0 − β1 + β2. We have β0 = 1, as the sphere has one component,
β1 = 0 as all 1-cycles are contractible, and β2 = 1 as the sphere encloses a single void. Similarly, χ(T2) = 0, as it
has the same Betti numbers as the sphere, except that β1 = 2.

Acknowledgments
The actual content of this lecture comes from Munkres [6] and Hatcher [1]. As always, the pedagogical constructions
are mine. Massey includes a description of the Alexander Duality [3]. The other citations are referenced within the
text.
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