What will be on the midterm?

CS 178, Spring 2010

Last revised 4/29/10.

Good luck on the exam!

Marc Levoy Computer Science Department Stanford University

General information

- Monday, 7-9pm, Braun Aud (in Mudd Chem Bldg)
- closed book, no notes
- calculators ok, but you won't need them
- on lectures and assigned chapters in London
- list of formulas will be provided on exam sheets
- practice problems in weekly assgns and sections this week
- attached are some review slides to help you study;
 treat these as a non-exhaustive summary of the course
- look also at the applets and the recap slides in each lecture
- emphasis will be on the concepts behind the formulas, and on the tradeoffs they imply for the photographer

Image formation

- the laws of perspective
 - especially natural perspective versus linear perspective
- pinhole imaging
 - tradeoff between aperture size and blur
- imaging uses lenses
 - Gauss's ray tracing construction (be able to draw it)
 - tradeoffs between focal length, sensor size, and FOV
 - changing the focal length vrs changing the viewpoint
- ♦ exposure
 - tradeoffs between aperture, shutter speed, motion blur, and depth of field (study Eddy's diagrams!)
 - tradeoffs that include ISO and noise covered later

Lenses and apertures

*orange lecture slides and items marked optional here are fair game for extra-credit Q's

qualitative understanding of the approximations we make

- geometrical optics instead of physical optics
- spherical lenses instead of hyperbolic lenses
- thin lens representation of thick optical systems
- paraxial approximation of ray angles
- the Gaussian lens formula (know it and be able to use it)
 - changing the focal length vrs changing the subject distance
 - understand transverse magnification
- center of perspective (ignore the other thick lens terms),
 convex vrs concave lenses; real vrs virtual images optional*

depth of field formula

- know its parts, how they vary, and the tradeoffs they imply
- hyperfocal distance and how to use it

Practical photographic lenses

aberrations (without the algebra)

- be able to recognize them by a name or sketch
- how is each one fixed? which are correctable in software? which are reducible by stopping down the aperture?
- other lens artifacts
 - be able to recognize them by a name or sketch
 - understand the geometry of vignetting, cos⁴ falloff optional
- diffraction, sharpness, and MTF (qualitatively)
 - what are they, and what factors do they depend on?
- special-purpose lenses
 - principles (not detailed derivations) of telephoto, zoom

Sampling and pixels

human field of view and spatial acuity

- be able to manipulate FOV, dpi, retinal arc, cycles / degree
- sampling and reconstruction
 - what is aliasing? when does it happen? how can it be avoided?
 - what is reconstruction error? how does it differ from aliasing?
 - raising the sampling rate vrs prefiltering vrs postfiltering

definition and uses of spatial convolution

- understand the integral and summation forms of this equation
- be able to work out a simple convolution, like two rects
- no calculus manipulations will be required on the exam

Photons and sensors

basic concepts (qualitatively)

- photons, quantum efficiency, blooming, smearing
- sampling vrs quantization, analog to digital conversion
- don't worry about specific circuits

+ how does spatial convolution map to a digital camera?

- fill factor, per-pixel microlenses, antialiasing filters
- be able to explain how exposure time is a temporal prefilter (not covered in lectures, but TAs will cover in sections)
- color sensing technologies
 - be able to recognize them from a name or sketch
 - tradeoffs between the technologies (qualitatively)

Autofocus (AF)

view cameras

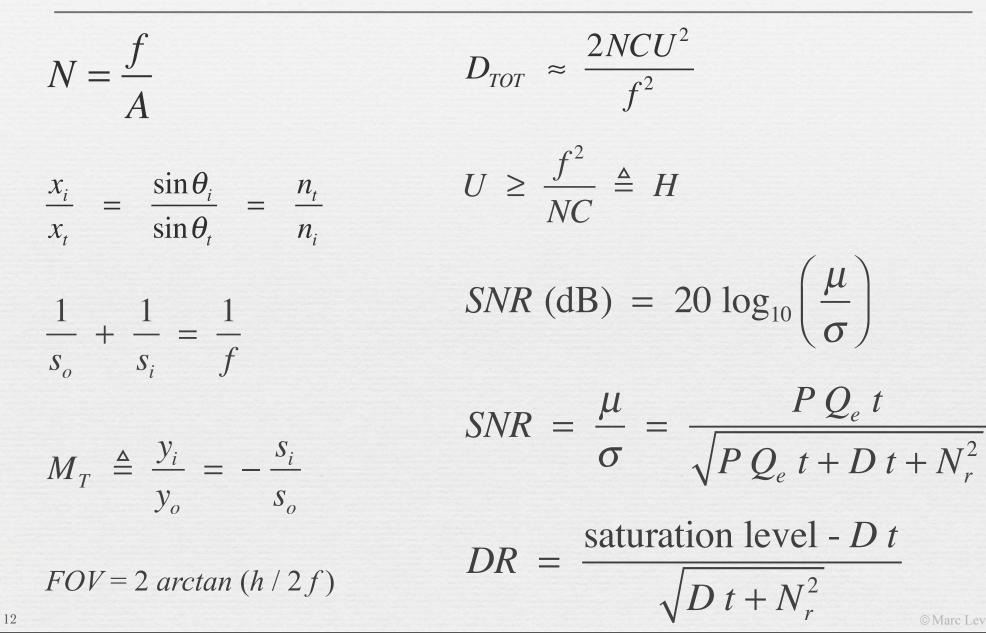
- understand eliminating vanishing points
- understanding tilting the focal plane
- active autofocus techniques
 - tradeoffs between time of flight and triangulation
 - be able to manipulate the geometry of triangulation, at least for right-angle triangles
- passive autofocus techniques
 - understand the principle of phase detection
 - understand the principle of contrast detection
 - when are they used? what are the tradeoffs?
 - don't worry about the details of lenslets, ray geometry, etc.

Image stabilization (IS)

- what are the causes of camera shake?
 - and how can you avoid it (without having an IS system)?
- treating camera shake as a 2D convolution of the image
 - understand the geometry of this approximation
- image stabilization systems
 - be able to define mechnical, optical, electronic IS
 - understand the principles of lens-shift vrs sensor-shift IS
 - understanding the ray geometry in detail is not required
 - how much does stabilization help?

Noise and ISO

what are the sources of noise in digital cameras?


- be able to recognize them by a name or description
- which ones grow with exposure time, or with temperature?
- which ones can be fixed in software?
- benefit of downsizing an image or averaging multiple shots
- signal-to-noise ratio and dynamic range
 - be able to apply the formulas correctly (we'll give you a list)
- + ISO
 - what is it, and how is it implemented in digital cameras?
 - tradeoffs between ISO and noise (study Eddy's diagram!)

Automatic exposure metering (AE)

- what makes metering hard?
 - understand (qualitatively) the dynamic range problem
- gamma and quantization
 - relationship of gamma transforms to # of bits required
 - when can you compare intensity levels in image files?
- metering technologies
 - what problems are caused by having few metering zones?
 - tradeoffs between typical shooting modes (A,P,Av,Tv,M)

You are not responsible for HDR imaging on your midterm.

List of important formulas (will be replicated on exam sheets)

