What will be on the midterm?

Marc Levoy
Computer Science Department
Stanford University
General information

- Monday, 7-9pm, rooms to be assigned by email
- closed book, no notes
- calculators ok, but you won’t need them
- on lectures and assigned chapters in London
- list of formulas will be provided on exam sheets
- practice problems in weekly assignments and sections this week
- attached are some review slides to help you study; treat these as a non-exhaustive summary of the course
- look also at the applets and the recap slides in each lecture
- emphasis will be on the concepts behind the formulas, and on the tradeoffs they imply for the photographer
Image formation

- the laws of perspective
 - especially natural perspective versus linear perspective

- pinhole imaging
 - tradeoff between aperture size and blur

- imaging uses lenses
 - Gauss’s ray tracing construction (be able to draw it)
 - tradeoffs between focal length, sensor size, and FOV
 - changing the focal length vs changing the viewpoint

- exposure
 - tradeoffs between aperture, shutter speed, motion blur, and depth of field (study Eddy’s diagrams!)
 - tradeoffs that include ISO and noise covered later
Lenses and apertures

- qualitative understanding of the approximations we make
 - geometrical optics instead of physical optics
 - spherical lenses instead of hyperbolic lenses
 - thin lens representation of thick optical systems*
 - paraxial approximation of ray angles*

- the Gaussian lens formula (know it and be able to use it)
 - changing the focal length vrs changing the subject distance
 - understand lens power and transverse magnification

- center of perspective (ignore the other thick lens terms), convex vrs concave lenses, real vrs virtual images

- depth of field formula
 - know its parts, how they vary, and the tradeoffs they imply
 - hyperfocal distance and how to use it
Practical photographic lenses

✦ aberrations (without the algebra)
 • be able to recognize them by a name or sketch
 • how is each one fixed? which are correctable in software?
 which are reducible by stopping down the aperture?

✦ other lens artifacts
 • be able to recognize them by a name or sketch
 • understand the geometry of vignetting, \cos^4 falloff*

✦ diffraction, sharpness, and MTF (qualitatively)
 • what are they, and what factors do they depend on?
 (some of this was covered in the sampling & pixels lecture)

✦ special-purpose lenses
 • principles (not detailed derivations) of telephoto, zoom
AutoFocus (AF)

- **view cameras**
 - understand eliminating vanishing points
 - understanding tilting the focal plane
 - understand real versus fake tilt-shift effects

- **passive autofocus techniques**
 - understand the principle of phase detection
 - understand the principle of contrast detection
 - when are they used? what are the tradeoffs?
 - don’t worry about the details of lenslets, ray geometry, etc.

- **active autofocus techniques** (if I have time to cover it this week)
 - tradeoffs between time of flight and triangulation
 - be able to manipulate the geometry of triangulation, at least for right-angle triangles
Automatic exposure metering (AE)

- what makes metering hard?
 - understand (qualitatively) the dynamic range problem
- gamma correction
 - what is it? when is it applied? what effect does it have?
 - when can you compare intensity levels in image files?
- metering technologies
 - what problems are caused by having few metering zones?
 - tradeoffs between typical shooting modes (A,P,Av,Tv,M)
Sampling and pixels

- Frequency representations of images*
- Resolution and human perception
 - be able to manipulate FOV, dpi, retinal arc, cycles / degree
- Sampling and aliasing
 - what is aliasing? when does it happen? (especially in a camera)
 - how can aliasing be avoided? what is prefiltering?
- Definition and uses of spatial convolution
 - understand the integral and summation forms of this equation
 - be able to work out a simple convolution, like two rects
 - no calculus manipulations will be required on the exam
- Sampling versus quantization
 - understand how aliasing differs from quantization artifacts
Photons and sensors

✦ basic concepts (qualitatively)
 • photons, quantum efficiency, blooming, smearing
 • analog to digital conversion
 • relationship of gamma correction to # of bits required
 • don’t worry about specific circuits

✦ how does aliasing and filtering apply to a digital camera?
 • fill factor, per-pixel microlenses, antialiasing filters
 • be able to explain how exposure time is a temporal prefilter

✦ color sensing technologies
 • be able to recognize them from a name or sketch
 • tradeoffs between the technologies (qualitatively)
 • what is demosaicing?
Noise and ISO

- what are the sources of noise in digital cameras?
 - be able to recognize them by a name or description
 - which ones grow with exposure time, or with temperature?
 - which ones can be fixed in software?
 - benefit of downsizing an image or averaging multiple shots

- signal-to-noise ratio and dynamic range
 - be able to apply the formulas correctly (we’ll give you a list)

- ISO
 - what is it, and how is it implemented in digital cameras?
 - tradeoffs between ISO and noise (study Eddy’s diagram from the image formation lecture!)
Image stabilization (IS)

- what are the causes of camera shake?
 - and how can you avoid it (without having an IS system)?
- treating camera shake as a 2D convolution of the image
 - understand the geometry of this approximation
- image stabilization systems
 - be able to define mechanical, optical, electronic IS
 - understand the principles of lens-shift vs sensor-shift IS
 - understanding the ray geometry in detail is not required
 - how much does stabilization help?
 - what is lucky imaging, and how can a photographer use it?
List of important formulas
(will be replicated on exam sheets)

\[N = \frac{f}{A} \]

\[\frac{x_i}{x_t} = \frac{\sin \theta_i}{\sin \theta_t} = \frac{n_t}{n_i} \]

\[\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f} \]

\[M_T \triangleq \frac{y_i}{y_o} = -\frac{s_i}{s_o} \]

\[FOV = 2 \arctan \left(\frac{h}{2f} \right) \]

\[D_{TOT} \approx \frac{2NCU^2}{f^2} \]

\[U \geq \frac{f^2}{NC} \triangleq H \]

\[SNR (\text{dB}) = 20 \log_{10} \left(\frac{\mu}{\sigma} \right) \]

\[SNR = \frac{\mu}{\sigma} = \frac{P Q_e t}{\sqrt{P Q_e t + D t + N_r^2}} \]

\[DR = \frac{\text{saturation level} - D t}{\sqrt{D t + N_r^2}} \]