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Why study sampling theory?
✦ Why do I sometimes get moiré artifacts in my images?

✦ What is an antialiasing filter?

✦ How many megapixels is enough?

✦ How do I compute circle of confusion for depth of field?

✦ Is Apple’s “Retina Display” just hype?

✦ What do MTF curves in lens reviews mean?

✦ What does Photoshop do when you downsize/upsize?

✦ What’s the difference between more pixels and more bits?
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Outline
✦ frequency representations of images

• filtering, blurring, sharpening
• MTF as a measure of sharpness in images

✦ resolution and human perception
• the spatial resolution of typical display media
• the acuity of the human visual system
• the right way to compute circle of confusion ( C )

✦ sampling and aliasing
• aliasing in space and time
• prefiltering using convolution to avoid aliasing
• prefiltering and sampling in cameras and Photoshop

✦ sampling versus quantization
3
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Frequency representations

✦ a sum of sine waves, each of different wavelength ( frequency ) 
and height ( amplitude ), can approximate arbitrary functions

✦ to adjust horizontal position ( phase ), replace with cosine 
waves, or use a mixture of sine and cosine waves4

(Foley)
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Frequency representations

✦ a sum of sine waves, each of different wavelength ( frequency ) 
and height ( amplitude ), can approximate arbitrary functions

✦ to adjust horizontal position ( phase ), replace with cosine 
waves, or use a mixture of sine and cosine waves5

✦ Fourier series:  any continuous, integrable, periodic function 
can be represented as an infinite series of sines and cosines

f (x) =
a0
2

+ an cos(nx) + bn sin(nx)[ ]
n=1

∞

∑

Not responsible on exams
for orange-tinted slides
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Fourier transforms of images

6

image

θ

r

• θ gives angle of sinusoid
• r gives spatial frequency
• brightness gives amplitude
   of sinusoid present in image

spectrum

complete spectrum 
is two images - 

sines and cosines

% In Matlab:
image = double(imread('flower.tif'))/255.0;
fourier = fftshift(fft2(ifftshift(image)));
fftimage = log(max(real(fourier),0.0))/20.0;
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A typical photograph
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image spectrum
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An image with higher frequencies

8

image spectrum
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Blurring in the Fourier domain
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image spectrum

I didn’t want to introduce too many technicalities into the lecture, but if you blur an 
image by erasing or attenuating selected frequencies in the spectrum as I’ve done here, 
you need to boost the remaining frequencies so that the sum of all frequencies stays the 
same.  Otherwise, the image (on the left) will get dimmer, which you don’t want.
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image spectrum

Original flower
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Sharpening in the Fourier domain
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image spectrum
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image spectrum

Q.  What does this filtering operation do?
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Q.  What does this filtering operation do?

?

spectrumimage
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Blurring in x, sharpening in y
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image spectrum
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Original

15

image spectrum
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Blurring in x, sharpening in y
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image
argh, astigmatism!

spectrum
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Describing sharpness in images:
the modulation transfer function (MTF)

✦ the amount of each 
spatial frequency that can 
be reproduced by an 
optical system

✦ loss may be due to 
misfocus, aberrations, 
diffraction, 
manufacturing defects, 
nose smudges, etc.

✦ MTF is contrast at each 
frequency relative to 
original signal

17 (imatest.com)
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Two different MTF curves
✦ in one curve, contrast stays high, but drops off at a 

relatively low resolution

✦ in the other curve, higher-resolution features are 
preserved, but contrast is lower throughout

18
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Sharpness versus contrast

19 (imatest.com) (cambridgeincolour.com)
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Restoring images

20

restored

see the ringing?

original

resolution

degraded

poor
resolution

poor
contrast

(cambridgeincolour.com)

In practice, since blurring and loss of contrast both involve attenuation of high 
frequencies (although to different extents), and restoration involves boosting 
those attenuated frequencies, then both sharpening and restoration of contrast 
should produce both some amount of ringing and and some amount of noise 
enhancement.  In these slides the ringing is evident, but not the noise 
enhancement.  We would have to blow the images up to see the noise.
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Recap
✦ any image can be equivalently represented by its Fourier 

transform, a.k.a. frequency or spectral representation
• weighted sum of sine and cosine component images
• each having a frequency, amplitude, and orientation in the plane

✦ filtering, for example blurring or sharpening, can be implemented 
by amplifying or attenuating selected frequencies

• i.e. modifying the contrast of selected sine or cosine components
relative to others, while maintaining same average over all components

• attenuating high frequencies ≈ low-pass-filtering ≈ blurring
• attenuating low frequencies ≈ high-pass filtering ≈ sharpening

✦ MTF measures preservation of frequencies by an optical system
• subjective image quality depends on both sharpness and contrast
• both can be restored, but at a price (in ringing or noise)

21
Quest ions?

As I mentioned in class, “high-pass” might be better called “high-
boosted”, if the goal is sharpening.  The term “high-pass” is historical, 
and in the context of this course should be taken to mean that the 
filter strengthens high frequencies relative to low frequencies.
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Spatial resolution of display media

✦ Example #1:  Macbook Air (laptop)
• 900 pixels on 7” high display
• ∆ x = 7”/ 900 pixels = 0.0078”/pixel
• 1/∆ x = 129 dpi  (dots per inch)

✦ Example #2:  Kindle 2
• 800 pixels on 4.8” high display
• 1/∆ x = 167 dpi

✦ Example #3:  iPad
• 1024 pixels on 7.8” high display
• 1/∆ x = 132 dpi

22

pitch = ∆ x density = 1/∆ x

Line printers are 300 dpi.
This is why we don’t like
reading on laptops.

2048 ✗
✗ 263

iPad3✗
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Spatial frequency on the retina

✦ Example #1:  Macbook Air viewed at d = 18”
• 900 pixels on 7” high display, p = 2 × 0.0078”
• retinal arc θ = 2 arctan (p / 2d) = 0.05º
• spatial frequency on retina 1/θ = 20 cycles per degree

23

θ

θ

assume the minimum
period p of a sine 
wave is a black-white 
pixel pair (“line pair”)

viewing distance d

Q.  What is the acuity of the human visual system?
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Human spatial sensitivity
(Campbell-Robson Chart)

24 (neurovision.berkeley.edu)
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Human spatial sensitivity

25

(horizontal axis 
not comparable 

to image on 
previous slide)

(psych.ndsu.nodak.edu)

cutoff is at 
about 50 cycles 

per degree
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Spatial frequency on the retina

✦ Example #1:  Macbook Air viewed at d = 18”
• 900 pixels on 7” high display, so p = 2 × 0.0078”
• retinal arc θ = 2 arctan (p / 2d) = 0.05º
• spatial frequency on retina 1/θ = 20 cycles per degree

26

θ

θ
viewing distance d

not nearly as high
as human acuity

assume the minimum
period p of a sine 
wave is a black-white 
pixel pair



 

(original is 40K × 20K pixels, Gates Hall print is 72” × 36”)

Balboa Park, San Diego
(Graham Flint)
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Spatial frequency on the retina

✦ Example #1:  Macbook Air viewed at d = 18”
• 900 pixels on 7” high display, p = 2 × 0.0078”
• retinal arc θ = 2 arctan (p / 2d) = 0.05º
• spatial frequency on retina 1/θ = 20 cycles per degree

✦ Example #2:  gigapixel photo viewed at d = 48”
• 20,000 pixels on 36” high print, p = 2 × 0.0018”
• spatial frequency on retina 1/θ = 232 cycles per degree

28

θ

θ
viewing distance d

assume the minimum
period p of a sine 
wave is a black-white 
pixel pair

much finer than
human acuity
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Human acuity & circle of confusion
✦ the maximum allowable circle of confusion ( C ) in a 

photograph can be computed from human spatial acuity 
projected onto the intended display medium
• depends on viewing distance

✦ Example:  photographic print viewed at 12”
• max human acuity on retina 1/θ ≈ 50 cycles per degree
• minimum detectable retinal arc θ ≈ 0.02º
• minimum feature size p = 2 × 12” × tan (θ / 2) = 0.0043”  (0.1mm)

✦ assume 5” × 7” print and Canon 5D II (5616 × 3744 pixels)
• 5” / 3744 pixels = 0.0017”/pixel  (0.04mm)
• therefore, circle of confusion can be 2.5 pixels wide before it’s blurry
• C = 6.4µ per pixel × 2.5 pixels = 16µ

29
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Human acuity & circle of confusion
✦ the maximum allowable circle of confusion ( C ) in a 

photograph can be computed from human spatial acuity 
projected onto the intended display medium
• depends on viewing distance

✦ Example:  photographic print viewed at 12”
• max human acuity on retina 1/θ ≈ 50 cycles per degree
• minimum detectable retinal arc θ ≈ 0.02º
• minimum feature size p = 2 × 12” × tan (θ / 2) = 0.0043”  (0.1mm)

✦ assume 5” × 7” print and Canon 5D II (5616 × 3744 pixels)
• 5” / 3744 pixels = 0.0017”/pixel  (0.04mm)
• therefore, circle of confusion can be 2.5 pixels wide before it’s blurry
• C = 6.4µ per pixel × 2.5 pixels = 16µ

30

To clarify, “minimum feature size p” means a pixel should be at least this big (0.0043”) on a print viewed from 12 inches 
away in order to match human acuity.  The figure of 0.0017” further down means that Canon 5D II pixels appear this big on a 
5x7 print.  Since 0.0017 is smaller than 0.0043, the printed pixels are smaller by 2.5x than we can actually perceive.  
Conversely, features in the scene can blur out to 2.5 pixels in the camera before we’ll see that blur in a 5x7 print (viewed 
from 12 inches away).  Thus, when shooting, we can treat the circle of confusion (C in the depth of field formula) as being 2.5 
pixels wide rather than the usual 1 pixel, leading to a deeper depth of field.  (A pixel on the Canon 5D II is 6.4 microns wide.)
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Recap
✦ spatial resolution of display media is measured by

• pitch (distance between dots or pixels) or density (dots per inch)

✦ effect on human observers is measured by
• retinal angle (degrees of arc) or frequency (cycles per degree)
• depends on viewing distance

✦ human spatial acuity is about 50 cycles per degree
• depends on contrast
• convert back to pitch to obtain circle of confusion for depth of field, 

and this conversion depends on viewing distance

31
Quest ions?
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Sampling and aliasing

✦ aliasing is high frequencies masquerading as low 
frequencies due to insufficiently closely spaced samples

32

abstract function

(http://ptolemy.eecs.berkeley.edu/eecs20/week13/moire.html)

spatial aliasing in images
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Sampling and aliasing

33

abstract function

(http://ptolemy.eecs.berkeley.edu/eecs20/week13/moire.html)

spatial aliasing in images

(http://ptolemy.eecs.berkeley.edu/eecs20/week13/aliasing.html)

temporal aliasing in audio

(http://www.michaelbach.de/ot/mot_wagonWheel/index.html)

temporal aliasing

A student observed that modern 
fluorescent lights are modulated to 
higher than 60Hz.  Thus, my rule 
about “no fluorescent lights in 
sawmills” might be out of date.
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✦ Nyquist-Shannon sampling theorem:  a function having 
frequencies no higher than n can be completely determined by 
samples spaced 1 / 2n apart

34

Fourier analysis of aliasing

fsampling > 2 × fcutoff
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Retinal sampling rate
✦ the human retina consists of discrete sensing cells

✦ therefore, the retina performs sampling

✦ sampling theory says

✦ if observed human cutoff is 50 cycles per degree,
then its sampling rate must be > 100 samples per degree

✦ this agrees with observed retinal cell spacing!

35

fsampling > 2 × fcutoff

(Cornsweet)

spacing between L,M cone
cells is 1µ ≈ 30 arc-seconds
(1/120º)
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Retinal sampling rate
✦ the human retina consists of discrete sensing cells

✦ therefore, the retina performs sampling

✦ sampling theory says

✦ if observed human cutoff is 50 cycles per degree,
then its sampling rate must be > 100 samples per degree

✦ this agrees with observed retinal cell spacing!

✦ Example #3:  iPhone 4 “Retina Display” viewed at 12” inches
• 960 pixels on 2.94” high display
• 1/∆ x = 326 dpi
• spatial frequency on retina = 34 cycles per degree

36

fsampling > 2 × fcutoff

yes, almost equal 
to human acuity



© Marc Levoy

Aliasing in photography
✦ a lens creates a focused image on the sensor

✦ suppose the sensor measured this image at points on a 
2D grid, but ignored the imagery between points?
• a.k.a. point sampling

37



© Marc Levoy

Simulation of point sampling

38
(Classic Media) digital image, 1976 x 1240 pixels
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Simulation of point sampling

39 every 4th pixel in x and y, then upsized using pixel replication
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Prefiltering to avoid aliasing
✦ before sampling, remove (or at least attenuate) sine waves 

of frequency greater than half the sampling rate

40

fcutoff <
1
2
fsampling

unfiltered prefiltered partially
pre-filtered

replace removed 
waves with their 
average intensity 
(gray in this case)
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Methods for prefiltering
✦ method #1:  frequency domain

1. convert image to frequency domain
2. remove frequencies above fcutoff  (replace with gray)
3. convert back to spatial domain
4. perform point sampling as before

• conversions are slow
• not clear how to apply this method to images as they enter a camera

✦ method #2:  spatial domain
1. blur image using convolution
2. perform point sampling as before

• direct and faster
• equivalent to method #1 (proof is beyond scope of this course)

41
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Convolution in 1D

✦ replace each input value with a weighted sum of itself 
and its neighbors, with weights given by a filter function

42

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

1 3 0 4 2 1

2 1

output f [x]∗ g[x]

input signal f [x]

filter g[x]
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Convolution in 1D

43

1 3 0 4 2 1

1 2

7output f [x]∗ g[x]

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

input signal f [x]

✦ replace each input value with a weighted sum of itself 
and its neighbors, with weights given by a filter function

notice that the filter
gets flipped when applied

A technicality I ignored during lecture is that if I really run this 
convolution from -∞ to +∞, then the non-zero part of the output 
should be bigger than the non-zero part of the input, and will taper 
towards zero over a band as wide as the filter.  In practice, 
Photoshop and other programs clip the output to the size of the 
input, and sometimes also try to fix this band, so that your image 
doesn’t end up with a dark border after convolution.
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Convolution in 1D

44

1 3 0 4 2 1

1 2

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

7 3output f [x]∗ g[x]

input signal f [x]

✦ replace each input value with a weighted sum of itself 
and its neighbors, with weights given by a filter function
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Convolution in 1D

45

1 3 0 4 2 1

1 2

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

7 3output f [x]∗ g[x]

input signal f [x]

8

✦ replace each input value with a weighted sum of itself 
and its neighbors, with weights given by a filter function
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More convolution formulae

✦ 1D discrete:  defined only on the integers

✦ 1D continuous:  defined on the real line

46

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

f (x) ∗ g(x) = f
−∞

∞

∫ (τ ) ⋅ g(x − τ ) dτ

(Flash demo)
http://graphics.stanford.edu/courses/

cs178/applets/convolution.html
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More convolution formulae

✦ 1D discrete:  defined only on the integers

✦ 1D continuous:  defined on the real line

✦ 2D discrete:  defined on the x, y integer grid

✦ 2D continuous:  defined on the x,y plane

47

f [x]∗ g[x] = f [k] ⋅ g[x − k]
k=−∞

∞

∑

f (x) ∗ g(x) = f
−∞

∞

∫ (τ ) ⋅ g(x − τ ) dτ

f [x, y]∗ g[x, y] = f [i, j] ⋅ g[x − i, y − j]
j=−∞

∞

∑
i=−∞

∞

∑

f (x, y) ∗ g(x, y) = f (τ1,τ 2 ) ⋅ g(x − τ1,
τ2 =−∞

∞

∫
τ1 =−∞

∞

∫ y − τ 2 ) dτ1 dτ 2
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Prefiltering reduces aliasing

48

every 4th pixel in x and y convolved by 4×4 pixel rect,
then sampled every 4th pixel 
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Prefiltering & sampling in photography

✦ photography consists of convolving the focused image 
by a 2D rect filter, then sampling on a 2D grid
• each point on this grid is called a pixel 

✦ if convolution is followed by sampling, you only need to 
compute the convolution at the sample positions
• for a rect filter of width equal to the sample spacing, this is 

equivalent to measuring the average intensity of the 
focused image in a grid of abutting squares

• this is exactly what a digital camera does

✦ the width of the rect is typically equal to the spacing 
between sample positions
• narrower leaves aliasing; wider produces excessive blur

49
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Prefiltering & sampling in photography
(contents of whiteboard) 

50

By the way, if you make the rect narrower than the 
canonical case (which runs from -1/2 to +1/2 in X), then 
you must make it taller (than +1 in Y), so that its area 
stays unity (1.0).  Otherwise, as in Fourier filtering, your 
image will get dimmer, which is an unintended result.  For 
the same reason, you saw me adjust the weights of the 
center column of pixels when I built an astigmatic filter 
in the convolution applet.



© Marc Levoy

Upsizing/downsizing in Photoshop
✦ resampling is the conversion of a discrete image into a 

second discrete image having more or fewer samples
1. interpolate between samples using convolution
2. if downsizing, blur to remove high frequencies
3. point sample at the new rate

• these steps can be simplified into a single discrete convolution

51

I didn’t explain in class how one might combine these steps into a single discrete 
convolution, and I won’t hold you responsible for knowing it.  Briefly, steps 1 and 
2 are both convolutions, and convolution is associative.  Thus, (f ⊛ r) ⊛ g  ≣  f ⊛ 
(r ⊛ g), where f is the input image, r is the reconstruction filter (see next slide), 
and g is a blurring filter (such as are shown in the online convolution applet).  
This equation says that the two filters r and g can be convolved with each other, 
thereby producing a single filter, sometimes called the resampling filter ρ (rho), 
which is larger in non-zero extent than either r or g , and that can be applied to 
the input image, followed by point sampling at the new rate.
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Interpolation via convolution
(contents of whiteboard)

✦ if the input is a discrete (i.e. sampled) function, then convolution can 
be treated as placing an vertically-scaled copy of the filter r(x) at each 
sample position as shown, summing the results, and dividing by the 
area under the filter (1.0 in the cases shown)

✦ the effect is to interpolate between the samples, hence reconstructing a 
continuous function from the discrete function52
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Upsizing by 16:1

53

nearest neighbor
(a.k.a. pixel replication)

bilinear

bicubic
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Downsizing by 1:6

54

nearest neighbor
(point sampling)

aliasing!

bicubic
I used pixel replication in this 
blowup, which is included 
solely so that you can more 
clearly see the pixels in the 
actual downsized image (the 
small one at left).
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Recap
✦ aliasing is high frequencies masquerading as low frequencies 

due to insufficiently closely spaced samples

✦ reduce aliasing by prefiltering the input before sampling
• implement by multiplication in the frequency domain
• or convolution in the spatial domain
• in the spatial domain, the prefilter is denoted g(x)

✦ in digital photography:
• g(x) is a pixel-sized rect, thus averaging intensity over areas
• if the rect is too small, aliasing occurs; solve with antialiasing filter

55
Quest ions?
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Sampling versus quantization

✦ an image is a function
• typically                      and

✦ we sample the domain       of this function as pixels

✦ we quantize the range    of this function as intensity levels

56

(http://learn.hamamatsu.com/articles/digitalimagebasics.html)

 
!
f (!x)

 (
!x)

 
!
f

 (
!x) = (x, y)  

!
f = (R,G,B)

(Canon)
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Example

57

8 bits × R,G,B = 
24 bits per pixel

Canon 1D III,
300mm, f/3.2
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Example
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8 bits × R,G,B = 
24 bits per pixel
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Example
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6 bits × R,G,B = 
18 bits per pixel
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Example
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5 bits × R,G,B = 
15 bits per pixel
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Example
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4 bits × R,G,B = 
12 bits per pixel
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Example
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3 bits × R,G,B = 
9 bits per pixel
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Dithering

63

256 colors (8 bits) uniformly 
distributed across RGB cube,

patterned dithering in Photoshop



© Marc Levoy

Dithering

64

256 colors (8 bits) adaptively 
distributed across RGB cube,

patterned dithering in Photoshop
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Dithering versus halftoning
✦ dithering for display (on a screen)

• palette of a few hundred colors (uniform or adaptive)
• flip some pixels in each neighborhood to the next 

available color in the palette to approximate 
intermediate colors when viewed from a distance

✦ halftoning for printing (on paper)
• palette of only 3 or 4 colors (primaries)
• print each primary as a grid of dots, superimposed 

but slightly offset from the other primaries, and vary 
dot size locally to approximate intermediate colors

✦ both techniques are applicable to full-color or 
black and white imagery

✦ both trade off spatial resolution to obtain more 
colors, hence to avoid quantization (contouring)

65
(wikimedia)
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Dithering versus halftoning

66

binary dithering grayscale dithering color dithering

grayscale halftoning color halftoning

(see http://bisqwit.iki.fi/jutut/
colorquant/ for more examples)
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Recap
✦ sampling describes where in its domain you measure a function

• for uniformly spaced samples, you can specify a sampling rate
• if the sampling rate is too low, you might suffer from aliasing
• you can reduce aliasing by prefiltering

✦ quantization describes how you represent these measurements
• for uniformly spaced levels, you can specify a bit depth
• if the bit depth is too low, you might suffer from contouring
• you can reduce contouring by dithering (if displaying the image on a 

screen) or halftoning (if printing it on paper)

67
Quest ions?
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Slide credits
✦ Pat Hanrahan

✦ Cornsweet, T.N., Visual Perception, Kluwer Academic Press, 1970.
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