Homework 2: Linear Systems

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013),
Stanford University

Due Monday, October 14, at midnight

Problem 1 (25 points). For this problem, assume that the matrix norm ||A|| for A € R™*" is induced by
a vector norm ||7|| for ¥ € R™ (but it may be the case that || - || # || - ||2).

(a) For A,B € R™", show ||A + B|| < ||A|l + ||B]|-

(b) For A,B € R"" and & € R", show || A3|| < | A||[3]| and || AB|| < | Al[||B]|.
(c) Fork > 0and A € R™", show || A¥||"/* > |A| for any real eigenvalue A of A.
(d) For A € R"™"and ||5]|y = ¥; ||, show || Al|y = max; Y, [a;;].

Extra credit. Prove “Gelfand’s formula:” p(A) = limy_. || A¥||"*, where p(A) = max{|A;|} for eigenvalues
A1, ..., A of A. In fact, this formula holds for any matrix norm || - ||.

Problem 2 (25 points; adapted from CS 205A 2012). In this problem you will derive facts necessary to
implement LU factorization of A € R™*™ with partial pivoting.

(a) Recall that the elimination matrix corresponding to a single step of forward substitution has the form
E = I+ &, where k < (. Argue that a full iteration of forward substitution in which row k is
forward-substituted to all rows £ with £ > k is carried out by a matrix of the form

M = I — i@,
where the i-th value in iy is zero for all i < k. Also show that the inverse of My is Ly = I + 1ié). .

(b) Suppose PU) is the permutation matrix swapping rows i and j. Show that if i,j > k then LiPU) =
PUD (I 4 PWiye]l).

(c) The matrix L from running forward substitution to completion with partial pivoting is given by
L=PLy-- Py 1Ly 1,
where each P; permutes row i with row i’ for some i’ > i. Show that L can be rewritten as
L=p-- 'Pn—lLlp"'LZ,ll
where L} = 1+ (Py_1 - - Pey1mig )€} -

(d) Show that Lf . L,’Z_l is lower triangular.



Problem 3 (25 points; “Mini-Riesz Representation Theorem”). We will say (-, -) is an inner product
on R™ if it satisfies:
1.

3.
4. (%,X) > 0 with equality if and only if X = 0.

Here we will derive a special case of an important theorem applied in geometry processing and machine
learning:

(
2. (aX,¥) = (X, §) VX,
( )

(a) Show that there exists a matrix such that (X,§) = X' Aiyj. Also show that there exists a matrix M
such that (X,yj) = (MX) - (M¥). [This shows that all inner products are dot products after suitable
rotation, stretching, and shearing of R™!]

(b) AMahalanobis metric on R" is a distance function of the form d(X,ij) = /(X — i, X — ¥j) for inner
product (-, -). Use the result of (a) to give an alternative characterization of Mahalanobis metrics.

(c) Suppose we are given a series of pairs (X;, ;) € R" x R". A typical “metric learning” problem might
involve finding a nontrivial Mahalanobis metric such that each X; is close to each ij; with respect to
that metric. Propose an optimization for this problem in the form of HWO problem 4.

Note: Make sure that your Mahalanobis distance is nonzero, but it is OK if your optimization allows
pseudometrics, that is, there can exist X # ij with d(%, 1) = 0. This problem is open-ended.

Problem 4 (25 points; “Kernel trick”). In lecture, we covered techniques for linear and nonlinear para-
metric regression. In this problem, we will develop one least-squares technique for nonparametic regression
that is used commonly in machine learning and vision.

(a) You can think of the least-squares problem as learning the vector @ in a function f(X) = @ - X given
a number of examples ¥V — yW, ... ¥®) s y&) and the assumption f(¥0)) ~ yO). Suppose the
columns of X are the vectors ¥\") and that i is the vector of values y'*). Provide the normal equations
for recovering @ with Tikhonov regularization.

(b) Show that @ € span {x¥1), ..., %)} in the Tikhonov-reqularized system.

(c) Thus, we can write @ = c;¥V) + - - + X8, Give a k x k linear system of equations satisfied by ¢
assuming X ' X is invertible.

(d) One way to do nonlinear regression might be to write a function ¢ : R" — R™ and learn fy(X) =
a- ¢(X), where ¢ may be nonlinear. Define K(X,y) = ¢(X) - ¢(if). Assuming we continue to use
regularized least squares as in (a), give an alternative form of fy that can be computed by evaluating

K rather than ¢. (Hint: What are the elements of X ' X?)

Extra credit. Consider the following formula (from the Fourier transform of the Gaussian):
e = / ™™ (sin(27tsx) sin(27tx) + cos(27wsx) cos(27tx)) dx

Suppose we wrote K(x,y) = e~ ~¥’, Explain how this “looks like” ¢(x) - ¢(v) for some ¢. How
does this suggest that the technique from (d) can be generalized?



