Homework 2: Linear Systems

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University

Due Monday, October 14, at midnight

Problem 1 (25 points). For this problem, assume that the matrix norm ||A|| for $A \in \mathbb{R}^{n \times n}$ is induced by a vector norm $||\vec{v}||$ for $\vec{v} \in \mathbb{R}^n$ (but it may be the case that $||\cdot|| \neq ||\cdot||_2$).

- (a) For $A, B \in \mathbb{R}^{n \times n}$, show $||A + B|| \le ||A|| + ||B||$.
- (b) For $A, B \in \mathbb{R}^{n \times n}$ and $\vec{v} \in \mathbb{R}^n$, show $||A\vec{v}|| \le ||A|| ||\vec{v}||$ and $||AB|| \le ||A|| ||B||$.
- (c) For k > 0 and $A \in \mathbb{R}^{n \times n}$, show $||A^k||^{1/k} \ge |\lambda|$ for any real eigenvalue λ of A.
- (d) For $A \in \mathbb{R}^{n \times n}$ and $\|\vec{v}\|_1 \equiv \sum_i |v_i|$, show $\|A\|_1 = \max_i \sum_i |a_{ij}|$.

Extra credit. Prove "Gelfand's formula:" $\rho(A) = \lim_{k \to \infty} ||A^k||^{1/k}$, where $\rho(A) \equiv \max\{|\lambda_i|\}$ for eigenvalues $\lambda_1, \ldots, \lambda_m$ of A. In fact, this formula holds for any matrix norm $||\cdot||$.

Problem 2 (25 points; adapted from CS 205A 2012). *In this problem you will derive facts necessary to implement LU factorization of* $A \in \mathbb{R}^{n \times n}$ *with partial pivoting.*

(a) Recall that the elimination matrix corresponding to a single step of forward substitution has the form $E \equiv I + c\vec{e}_{\ell}\vec{e}_{k}^{\mathsf{T}}$, where $k < \ell$. Argue that a full iteration of forward substitution in which row k is forward-substituted to all rows ℓ with $\ell > k$ is carried out by a matrix of the form

$$M_k = I - \vec{m}_k \vec{e}_k^{\top}$$
,

where the i-th value in \vec{m}_k is zero for all $i \leq k$. Also show that the inverse of M_k is $L_k \equiv I + \vec{m}_k \vec{e}_k^{\top}$.

- (b) Suppose $P^{(ij)}$ is the permutation matrix swapping rows i and j. Show that if i, j > k then $L_k P^{(ij)} = P^{(ij)}(I + P^{(ij)}\vec{m}_k\vec{e}_k^\top)$.
- (c) The matrix L from running forward substitution to completion with partial pivoting is given by

$$L = P_1 L_1 \cdots P_{n-1} L_{n-1},$$

where each P_i permutes row i with row i' for some i' > i. Show that L can be rewritten as

$$L = P_1 \cdots P_{n-1} L_1^p \cdots L_{n-1}^p,$$

where $L_k^p \equiv I + (P_{n-1} \cdots P_{k+1} \vec{m}_k) \vec{e}_k^{\top}$.

(d) Show that $L_1^p \cdots L_{n-1}^p$ is lower triangular.

Problem 3 (25 points; "Mini-Riesz Representation Theorem"). We will say $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n if it satisfies:

- 1. $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle \, \forall \vec{x}, \vec{y} \in \mathbb{R}^n$
- 2. $\langle \alpha \vec{x}, \vec{y} \rangle = \alpha \langle \vec{x}, \vec{y} \rangle \, \forall \vec{x}, \vec{y} \in \mathbb{R}^n, \alpha \in \mathbb{R}$
- 3. $\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle \, \forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$
- 4. $\langle \vec{x}, \vec{x} \rangle \geq 0$ with equality if and only if $\vec{x} = \vec{0}$.

Here we will derive a special case of an important theorem applied in geometry processing and machine learning:

- (a) Show that there exists a matrix such that $\langle \vec{x}, \vec{y} \rangle = \vec{x}^{\top} A \vec{y}$. Also show that there exists a matrix M such that $\langle \vec{x}, \vec{y} \rangle = (M \vec{x}) \cdot (M \vec{y})$. [This shows that all inner products are dot products after suitable rotation, stretching, and shearing of \mathbb{R}^n !]
- (b) A Mahalanobis metric on \mathbb{R}^n is a distance function of the form $d(\vec{x}, \vec{y}) = \sqrt{\langle \vec{x} \vec{y}, \vec{x} \vec{y} \rangle}$ for inner product $\langle \cdot, \cdot \rangle$. Use the result of (a) to give an alternative characterization of Mahalanobis metrics.
- (c) Suppose we are given a series of pairs $(\vec{x}_i, \vec{y}_i) \in \mathbb{R}^n \times \mathbb{R}^n$. A typical "metric learning" problem might involve finding a nontrivial Mahalanobis metric such that each \vec{x}_i is close to each \vec{y}_i with respect to that metric. Propose an optimization for this problem in the form of HW0 problem 4.

Note: Make sure that your Mahalanobis distance is nonzero, but it is OK if your optimization allows pseudometrics, that is, there can exist $\vec{x} \neq \vec{y}$ with $d(\vec{x}, \vec{y}) = 0$. This problem is open-ended.

Problem 4 (25 points; "Kernel trick"). *In lecture, we covered techniques for linear and nonlinear* parametric regression. *In this problem, we will develop one least-squares technique for nonparametic regression that is used commonly in machine learning and vision.*

- (a) You can think of the least-squares problem as learning the vector \vec{a} in a function $f(\vec{x}) = \vec{a} \cdot \vec{x}$ given a number of examples $\vec{x}^{(1)} \mapsto y^{(1)}, \ldots, \vec{x}^{(k)} \mapsto y^{(k)}$ and the assumption $f(\vec{x}^{(i)}) \approx y^{(i)}$. Suppose the columns of X are the vectors $\vec{x}^{(i)}$ and that \vec{y} is the vector of values $y^{(i)}$. Provide the normal equations for recovering \vec{a} with Tikhonov regularization.
- (b) Show that $\vec{a} \in span \{\vec{x}^{(1)}, \dots, \vec{x}^{(k)}\}$ in the Tikhonov-regularized system.
- (c) Thus, we can write $\vec{a} = c_1 \vec{x}^{(1)} + \cdots + c_k \vec{x}^{(k)}$. Give a $k \times k$ linear system of equations satisfied by \vec{c} assuming $X^{\top}X$ is invertible.
- (d) One way to do nonlinear regression might be to write a function $\phi: \mathbb{R}^n \to \mathbb{R}^m$ and learn $f_{\phi}(\vec{x}) = \vec{a} \cdot \phi(\vec{x})$, where ϕ may be nonlinear. Define $K(\vec{x}, \vec{y}) = \phi(\vec{x}) \cdot \phi(\vec{y})$. Assuming we continue to use regularized least squares as in (a), give an alternative form of f_{ϕ} that can be computed by evaluating K rather than ϕ . (Hint: What are the elements of $X^{\top}X$?)

Extra credit. Consider the following formula (from the Fourier transform of the Gaussian):

$$e^{-\pi(s-t)^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} (\sin(2\pi sx)\sin(2\pi tx) + \cos(2\pi sx)\cos(2\pi tx)) dx$$

Suppose we wrote $K(x,y) = e^{-\pi(x-y)^2}$. Explain how this "looks like" $\phi(x) \cdot \phi(y)$ for some ϕ . How does this suggest that the technique from (d) can be generalized?