
Homework 2: Linear Systems
CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013),

Stanford University
Due Monday, October 14, at midnight

Problem 1 (25 points). For this problem, assume that the matrix norm ‖A‖ for A ∈ Rn×n is induced by
a vector norm ‖~v‖ for ~v ∈ Rn (but it may be the case that ‖ · ‖ 6= ‖ · ‖2).

(a) For A, B ∈ Rn×n, show ‖A + B‖ ≤ ‖A‖+ ‖B‖.

(b) For A, B ∈ Rn×n and ~v ∈ Rn, show ‖A~v‖ ≤ ‖A‖‖~v‖ and ‖AB‖ ≤ ‖A‖‖B‖.

(c) For k > 0 and A ∈ Rn×n, show ‖Ak‖1/k ≥ |λ| for any real eigenvalue λ of A.

(d) For A ∈ Rn×n and ‖~v‖1 ≡ ∑i |vi|, show ‖A‖1 = maxj ∑i |aij|.

Extra credit. Prove “Gelfand’s formula:” ρ(A) = limk→∞ ‖Ak‖1/k, where ρ(A) ≡ max{|λi|} for eigenvalues
λ1, . . . , λm of A. In fact, this formula holds for any matrix norm ‖ · ‖.

Problem 2 (25 points; adapted from CS 205A 2012). In this problem you will derive facts necessary to
implement LU factorization of A ∈ Rn×n with partial pivoting.

(a) Recall that the elimination matrix corresponding to a single step of forward substitution has the form
E ≡ I + c~e ~̀e>k , where k < `. Argue that a full iteration of forward substitution in which row k is
forward-substituted to all rows ` with ` > k is carried out by a matrix of the form

Mk = I − ~mk~e>k ,

where the i-th value in ~mk is zero for all i ≤ k. Also show that the inverse of Mk is Lk ≡ I + ~mk~e>k .

(b) Suppose P(ij) is the permutation matrix swapping rows i and j. Show that if i, j > k then LkP(ij) =
P(ij)(I + P(ij)~mk~e>k ).

(c) The matrix L from running forward substitution to completion with partial pivoting is given by

L = P1L1 · · · Pn−1Ln−1,

where each Pi permutes row i with row i′ for some i′ > i. Show that L can be rewritten as

L = P1 · · · Pn−1Lp
1 · · · L

p
n−1,

where Lp
k ≡ I + (Pn−1 · · · Pk+1~mk)~e>k .

(d) Show that Lp
1 · · · L

p
n−1 is lower triangular.
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Problem 3 (25 points; “Mini-Riesz Representation Theorem”). We will say 〈·, ·〉 is an inner product
on Rn if it satisfies:

1. 〈~x,~y〉 = 〈~y,~x〉 ∀~x,~y ∈ Rn

2. 〈α~x,~y〉 = α〈~x,~y〉 ∀~x,~y ∈ Rn, α ∈ R

3. 〈~x +~y,~z〉 = 〈~x,~z〉+ 〈~y,~z〉 ∀~x,~y,~z ∈ Rn

4. 〈~x,~x〉 ≥ 0 with equality if and only if ~x =~0.

Here we will derive a special case of an important theorem applied in geometry processing and machine
learning:

(a) Show that there exists a matrix such that 〈~x,~y〉 = ~x>A~y. Also show that there exists a matrix M
such that 〈~x,~y〉 = (M~x) · (M~y). [This shows that all inner products are dot products after suitable
rotation, stretching, and shearing of Rn!]

(b) A Mahalanobis metric on Rn is a distance function of the form d(~x,~y) =
√
〈~x−~y,~x−~y〉 for inner

product 〈·, ·〉. Use the result of (a) to give an alternative characterization of Mahalanobis metrics.

(c) Suppose we are given a series of pairs (~xi,~yi) ∈ Rn×Rn. A typical “metric learning” problem might
involve finding a nontrivial Mahalanobis metric such that each ~xi is close to each ~yi with respect to
that metric. Propose an optimization for this problem in the form of HW0 problem 4.

Note: Make sure that your Mahalanobis distance is nonzero, but it is OK if your optimization allows
pseudometrics, that is, there can exist ~x 6= ~y with d(~x,~y) = 0. This problem is open-ended.

Problem 4 (25 points; “Kernel trick”). In lecture, we covered techniques for linear and nonlinear para-
metric regression. In this problem, we will develop one least-squares technique for nonparametic regression
that is used commonly in machine learning and vision.

(a) You can think of the least-squares problem as learning the vector~a in a function f (~x) = ~a ·~x given
a number of examples ~x(1) 7→ y(1), . . . ,~x(k) 7→ y(k) and the assumption f (~x(i)) ≈ y(i). Suppose the
columns of X are the vectors ~x(i) and that ~y is the vector of values y(i). Provide the normal equations
for recovering~a with Tikhonov regularization.

(b) Show that~a ∈ span {~x(1), . . . ,~x(k)} in the Tikhonov-regularized system.

(c) Thus, we can write~a = c1~x(1) + · · ·+ ck~x(k). Give a k× k linear system of equations satisfied by~c
assuming X>X is invertible.

(d) One way to do nonlinear regression might be to write a function φ : Rn → Rm and learn fφ(~x) =
~a · φ(~x), where φ may be nonlinear. Define K(~x,~y) = φ(~x) · φ(~y). Assuming we continue to use
regularized least squares as in (a), give an alternative form of fφ that can be computed by evaluating
K rather than φ. (Hint: What are the elements of X>X?)

Extra credit. Consider the following formula (from the Fourier transform of the Gaussian):

e−π(s−t)2
=

∫ ∞

−∞
e−πx2

(sin(2πsx) sin(2πtx) + cos(2πsx) cos(2πtx)) dx

Suppose we wrote K(x, y) = e−π(x−y)2
. Explain how this “looks like” φ(x) · φ(y) for some φ. How

does this suggest that the technique from (d) can be generalized?
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