Homework 4: SVD and Root-Finding

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University

Due Monday, November 4, at midnight

Problem 1 (30 points). *As promised in class:*

(a) We'll start with some review from lecture. Derive the Broyden step by solving the following minimization in closed form for J_k :

minimize_{$$J_k$$} $||J_k - J_{k-1}||^2_{Fro}$
such that $J_k(\vec{x}_k - \vec{x}_{k-1}) = f(\vec{x}_k) - f(\vec{x}_{k-1})$

Hint: This problem was solved in class and is solved in the lecture notes.

(b) Verify the Sherman-Morrison formula:

$$(A + \vec{u}\vec{v}^{\top})^{-1} = A^{-1} - \frac{A^{-1}\vec{u}\vec{v}^{\top}A^{-1}}{1 + \vec{v}^{\top}A^{-1}\vec{u}}$$

(c) Assuming J_0 is the identity matrix, give a version of Broyden's root-finding algorithm that does not require matrix inversion.

Problem 2 (40 points). *Take* $\sigma_i(A)$ *to be the i-th singular value of the square matrix* $A \in \mathbb{R}^{n \times n}$. *Define the* nuclear norm *of* A *to be*

$$||A||_* \equiv \sum_{i=1}^n \sigma_i(A).$$

Note: What follows is a tricky problem. Get started early, and feel free to ask questions on Piazza or in office hours. Also recall our mantra from lecture: "If a linear algebra problem is hard, substitute the SVD."

(a) Show $||A||_* = tr(\sqrt{A^{\top}A})$, where trace of a matrix tr(A) is the sum $\sum_i a_{ii}$ of its diagonal elements. For this problem, we will define the square root of a symmetric, positive semidefinite matrix M to be $\sqrt{M} \equiv XD^{1/2}X^{\top}$, where $D^{1/2}$ is the diagonal matrix containing (nonnegative) square roots of the eigenvalues of M and X contains the eigenvectors of $M = XDX^{\top}$.

Hint (to get started): Write $A = U\Sigma V^{\top}$ and argue $\Sigma^{\top} = \Sigma$ in this case.

- (b) If $A, B \in \mathbb{R}^{n \times n}$, show tr(AB) = tr(BA).
- (c) Show $||A||_* = \max_{C^\top C = I} tr(AC)$. [Hint: Substitute the SVD of A and apply part (b).]
- (d) Show that $||A + B||_* \le ||A||_* + ||B||_*$. [Hint: Use part (c).]

- (e) Recall from lecture that minimizing $\|A\vec{x} \vec{b}\|_2^2 + \|\vec{x}\|_1$ provides an alternative to Tikhonov regularization that can yield sparse vectors \vec{x} under certain conditions. Assuming this is the case, in a few sentences explain informally why minimizing $\|A A_0\|_{Fro}^2 + \|A\|_*$ over A for a fixed $A_0 \in \mathbb{R}^{n \times n}$ might yield a low-rank approximation of A_0 .
- EC. Read about the "low-rank matrix completion" problem and explain one practical application of its solution; the strategy in part (e) is one optimization approach to solving this problem.

Problem 3 (15 points). Some shorter exercises:

- (a) [Heath 5.11] Suppose you are using the secant method to find a root x^* of a nonlinear equation f(x) = 0. Show that if any iteration it happens to be the case that either $x_k = x^*$ or $x_{k-1} = x^*$ (but not both), then it will also be true that $x_{k+1} = x^*$.
- (b) Show that adding a row to a matrix cannot decrease its largest or smallest singular value.

Problem 4 (15 points). *In this problem, we will derive a technique is known as Newton-Raphson division. Thanks to its fast convergence, it is often implemented in hardware for IEEE-754 floating point arithmetic.*

- (a) Show how the reciprocal $\frac{1}{a}$ of $a \in \mathbb{R}$ can be computed iteratively using Newton's method. Write your iterative formula in a way that requires at most two multiplications, one addition or subtraction, and no divisions.
- (b) Take x_k to be the estimate of $\frac{1}{a}$ during the k-th iteration of Newton's method. If we define $\varepsilon_k \equiv ax_k 1$, show that $\varepsilon_{k+1} = -\varepsilon_k^2$.
- (c) Approximately how many iterations of Newton's method are needed to compute $\frac{1}{a}$ within d binary decimal points? Write your answer in terms of ε_0 and d, and assume $|\varepsilon_0| < 1$.