Homework 5: Optimization

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013),
Stanford University

Due Monday, November 11, at midnight

Problem 1 (20 points). A few warm-up problems to get you thinking about conjugate gradients:

(a) Suppose A is symmetric and positive definite. Show that the minimizer ¥* of f(¥) = 1¥T AX —
b7 ¥ + c satisfies ¥* = A~1D. Be sure to argue that X* is a minimizer instead of a critical point.

(b) Suppose Uy, ..., U are linearly independent in R". We will say two vectors X,ij € R" are A-
conjugate when ¥" Aij = 0. Give a variant of the Gram-Schmidt algorithm for finding a set of
A-conjugate vectors W1, . . ., Wy, with span {1, ..., W, } = span {71, ...0,}.

Problem 2 (20 points). In this problem we will study the linear programming problem.

(a) A linear program in “standard form” is given by:

minimizey C'X%
such that AX=0b
X>0

Here, the optimization is over X € R"; the remaining variables are constants A € R™*", b € R™,
and ¢ € R". Find the KKT conditions of this system.

(b) Suppose we add a constraint of the form 3% < d for some fixed 7 € R" and d € R. Explain how
such a constraint can be added while keeping a linear program in standard form.

(c) The “dual” of this linear program is another optimization:
maximizey b7y
suchthat A"y <¢

Assuming that the primal and dual have exactly one stationary point, show that the optimal value of
the primal and dual objectives coincide.

Hint: Show that the KKT multipliers of one problem can be used to solve the other.

Note: This property is called “strict duality.” The famous simplex algorithm for solving linear

programs maintains estimates of ¥ and ij, terminating when ¢'¥* — b j* = 0.

Problem 3 (20 points). Here we examine some changes to the gradient descent algorithm described in
class for unconstrained optimization on a function f.

(a) In machine learning, the stochastic gradient descent algorithm can be used to optimize many com-
mon objective functions:



(i) Give an example of a practical optimization problem (from lecture or of your own design) with
an objective taking the form f(%¥) = & YN | g(¥; — %) for some function g : R" — R.

(i) Propose a randomized approximation of V f summing no more than k terms (for some k < N)
assuming the X;’s are similar to one another. Discuss advantages and drawbacks of using such
an approximation.

(b) The “line search” part of gradient descent must be considered carefully:

(i) Suppose an iterative optimization routine gives a sequence of estimates X1, Xy, . . . of the position
X* of the minimum of f. Is it enough to assume f(Xy) < f(Xx_1) to guarantee that the Xj's
converge to a local minimum? Why?

(i) Suppose we run gradient descent. Using the notation from §8.4.1 of the lecture notes, if we
suppose f(X) > 0 for all X and that we are able to find t* exactly in each iteration, show that
f (%) converges as k — co.

EC. Explain how the optimization in (ii) for t* can be overkill. In particular, explain how the Wolfe
conditions (you will have to look these up!) relax the assumption that we can find t*.

Problem 4 (20 points). Sometimes we are greedy and wish to optimize multiple objectives simultaneously.
For example, we might want to fire a rocket to reach an optimal point in time and space. It may not be
possible to do this simultaneously, but some theories attempt to reconcile multiple optimization objectives.

Suppose we are given functions f1(X), f2(X), ..., fr(X). A point X is said to Pareto dominate another
point if f;(X) < fi() foralliand f;(%X) < f;(y) for somej € {1,...,k}. A point ¥* is Pareto optimal if
it is not dominated by any point ij. Assume f1, ..., fx are convex and in particular have unique minimizers.

(a) Show that the set of Pareto optimal points is nonempty in this case.

(b) Suppose Y_;vi = 1 and «y; > 0 for all i. Show that the minimizer X* of ¢(X) = Y_; vifi(X) is Pareto
optimal.
Note: One strategy for multi-objective optimization is to promote % to a variable with constraints
7>0and ¥y =1.

(c) Suppose X minimizes f;(¥) over all possible X. Write vector Z € R¥ with components z; = f;(X7).
Show that the minimizer X* of h(X) = Y_;(fi(¥) — z;)? is Pareto optimal.
Note: This part and the previous part represent two possible scalarizations of the multi-objective
optimization problem by reducing to a single scalar objective.

Problem 5 (20 points; Heath 6.8). Consider the function f : R> — R defined by

F@) = 308 —xa2+ 51— x)?

(a) At what point does f attain a minimum?
(b) Perform one iteration of Newton's method for minimizing f using the starting point Xy = (2,2).
(c) In what sense is this a good step?

(d) In what sense is this a bad step?



