
Homework 8 (optional): Ordinary Differential Equations
CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013),

Stanford University
Due Monday, December 9, at midnight (no extensions)

This homework can be used to replace your lowest homework grade. It is
completely optional, and you cannot use late days. If you choose not to com-
plete this assignment, you might look it over, as you will be responsible for the
material it covers on the final exam.

Problem 1 (50 points). In this problem you will implement several methods for simulating a set of particles
connected by springs as they move over time. The file hw8.m contains a testing script.
Matlab tip: ctrl+enter will run the block of code separated by %% containing the cursor.
Note: Since CS 205A is not a physics class, in this problem we will assume all particles have mass 1 and all
springs have constant 1.

(a) Suppose we are given a graph G = (V, E) as in problem 1 of homework 6. We will use this graph to
represent a system of particles on the plane attached by springs. In particular, each vertex v ∈ V will
represent a particle in a physical system, and each edge (u, v) ∈ E will represent a spring attached
to particles u and v. If two particles at positions ~x and ~y are connected by a spring, then the spring
exerts force ~y−~x on the particle at ~x and force ~x−~y on the particle at ~y.

Suppose we write the positions of all the particles in the system in a matrix X ∈ Rn×2. Show that
you can construct a matrix F ∈ Rn×n such that the k-th row of FX is the total force exerted by the
spring system on particle k. Implement forceMatrix.m to compute F.

(b) By Newton’s second law, the ODE X′′ = FX determines the time evolution of the system, assuming
all the particles have mass one. Recall from lecture that a second-order ODE can be reduced to a
first-order ODE Y′ = AY for Y ∈ R2n×2. Derive this reduction and write code to find A given F in
firstOrderMatrix.m.

(c) Implement the following three schemes for approximating solutions to Y′ = AY and discuss what
happens to each method when you take large time steps.

(i) Forward Euler: forwardEuler.m

(ii) Backward Euler: backwardEuler.m

(iii) Trapezoid: trapezoidalODE.m

(d) Implement Leapfrog integration for X′′ = FX in leapfrog.m.
Hint: You need to formulate a strategy for moving the velocity an initial half step in time.
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Problem 2 (50 points). The swing angle θ of a pendulum under gravity satisfies the following ODE:

θ′′ = − sin θ,

where |θ(0)| < π and θ′(0) = 0.

(a) Suppose θ(t) solves the ODE. Show that the following value (representing the energy of the system)
is constant as a function of t:

E(t) ≡ 1
2
(θ′)2 − cos θ

(b) As you saw in the previous problem, many ODE integrators show bad global behavior as time pro-
gresses over larger periods. For instance, forward Euler can add energy to a system by overshooting,
while backward Euler tends to damp out motion and remove energy. In many computer graphics
applications, quality long-term behavior can be very important, since these large scale issues cause
visual artifacts. The class of symplectic integrators is designed to avoid this issue.

Denote ω = θ′. The symplectic Euler scheme makes a series of estimates θ0, θ1, θ2, θ3, . . . and
ω0, ω1, ω2, ω3, . . . at time t = 0, h, 2h, 3h, . . . using the following iteration:

θk+1 = θk + hωk

ωk+1 = ωk − h sin θk+1

Define

Ek ≡
1
2

ω2
k − cos θk.

Show that Ek+1 = Ek + O(h2).

(c) Suppose we make the small-angle approximation sin θ ≈ θ and decide to solve the linear ODE θ′′ =
−θ instead. Now, symplectic Euler takes the following form:

θk+1 = θk + hωk

ωk+1 = ωk − hθk+1

Write a 2× 2 matrix A such that (
θk+1
ωk+1

)
= A

(
θk
ωk

)
.

(d) If we define Ek ≡ ω2
k + hωkθk + θ2

k , show that Ek+1 = Ek in the iteration from (c). In other words,
Ek is constant from time step to time step.
Note: If you must, you can use Wolfram Alpha to simplify algebraic expressions, but it is not too
difficult to do this one by hand!
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