CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Course Topics I

1. Numerics

- Stability and error analysis
- Floating-point representations

2. Linear algebra

- Gaussian elimination and LU
- Column spaces and QR
- Eigenproblems
- Applications

3. Root-finding and optimization

- Single-variable
- Multivariable
- Constrained optimization

Course Topics II

▶ Iterative linear solvers: Conjugate gradients and friends

4. Interpolation and quadrature

- Approximating integrals
- Approximating derivatives

5. Differential equations

- ODEs: time-stepping, discretization
- ▶ PDEs: Poisson equation, heat equation, waves
- Techniques: Differencing, applications

Two Roles

Client of numerical methods

Designer of numerical methods

Variational Viewpoint

Minimize objective subject to constraints

$$A\vec{x} = \vec{b} \iff \min \|A\vec{x} - \vec{b}\|^2$$

$$A^{\top}A\vec{x} = \lambda \vec{x} \iff \min \|A\vec{x}\| \text{ s.t. } \|\vec{x}\| = 1$$

What Next?

- More depth: Anything in CME!
- Applications:
 CS 231A, CS 221/229, CS 248/348,
 CS 334A

Final Exam

- Cumulative
- Similar format to midterm
 - ▶ **Two** sheets of notes
 - Gates B03

Thanks!

justin.solomon@stanford.edu