Eigenproblems I

CS 205A:
Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon
Setup

Given: Collection of data points \vec{x}_i

- Age
- Weight
- Blood pressure
- Heart rate
Setup

Given: Collection of data points \vec{x}_i

- Age
- Weight
- Blood pressure
- Heart rate

Find: Correlations between different dimensions
Simplest Model

One-dimensional subspace

\[\vec{x}_i \approx c_i \hat{v} \]
Simplest Model

One-dimensional subspace

\[\vec{x}_i \approx c_i \vec{v} \]

Equivalently:

\[\vec{x}_i \approx c_i \hat{\vec{v}} \]
Review

What is c_i?
Review

What is c_i?

$$c_i = \vec{x}_i \cdot \hat{U}$$
Variational Idea

\[\text{minimize } \sum_i \| \vec{x}_i - \text{proj}_{\hat{v}} \vec{x}_i \|^2 \]

such that \(\| \hat{v} \| = 1 \)
Equivalent Optimization

\[
\begin{align*}
\text{maximize} & \quad ||X^T \hat{v}||^2 \\
\text{such that} & \quad ||\hat{v}||^2 = 1
\end{align*}
\]
End Goal

Eigenvector of XX^\top with largest eigenvalue.
End Goal

Eigenvector of XX^\top with largest eigenvalue.

“First principal component”
Physics (in one slide)

Newton:

\[\vec{F} = m \frac{d^2 \vec{x}}{dt^2} \]
Physics (in one slide)

Newton:

$$\vec{F} = m \frac{d^2 \vec{x}}{dt^2}$$

Hooke:

$$\vec{F}_s = k(\vec{x} - \vec{y})$$
First-Order System

\[
\frac{d}{dt} \begin{pmatrix} \vec{X} \\
\vec{V} \end{pmatrix} = \begin{pmatrix} 0 & I \\
M^{-1}K & 0 \end{pmatrix} \begin{pmatrix} \vec{X} \\
\vec{V} \end{pmatrix}
\]
General ODE

\[\dot{X} = AX \]
Eigenvector Solution

\[\vec{x}' = A\vec{x} \]

\[A\vec{x}_i = \lambda_i \vec{x}_i \]

\[\vec{x}(0) = c_1 \vec{x}_1 + \cdots + c_k \vec{x}_k \]
Eigenvector Solution

\[\ddot{\vec{x}} = A \vec{x} \]

\[A \vec{x}_i = \lambda_i \vec{x}_i \]

\[\vec{x}(0) = c_1 \vec{x}_1 + \cdots + c_k \vec{x}_k \]

\[\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{x}_1 + \cdots + c_k e^{\lambda_k t} \vec{x}_k \]
Aside: Matrix Inverse

\[\vec{b} = c_1 \vec{x}_1 + \cdots + c_k \vec{x}_k \]

\[A \vec{x} = \vec{b} \]
Aside: Matrix Inverse

\[\vec{b} = c_1 \vec{x}_1 + \cdots + c_k \vec{x}_k \]

\[A \vec{x} = \vec{b} \]

\[\implies \vec{x} = \frac{c_1}{\lambda_1} \vec{x}_1 + \cdots + \frac{c_n}{\lambda_n} \vec{x}_n \]
Setup

Have: n items in a dataset

$w_{ij} \geq 0$ similarity of items i and j

$w_{ij} = w_{ji}$

Want: x_i embedding on \mathbb{R}
Quadratic Energy

\[
E(\vec{x}) = \sum_{ij} w_{ij} (x_i - x_j)^2
\]
Optimization

minimize $E(\vec{x})$
Optimization

minimize $E(\vec{x})$

such that $\|\vec{x}\|^2 = 1$
Optimization

minimize $E(\vec{x})$

such that $\|\vec{x}\|^2 = 1$

$\vec{1} \cdot \vec{x} = 0$
Simplification

\[E(\vec{x}) = \vec{x}^\top (2A - 2W)\vec{x} \]
Second smallest eigenvector of $2A - 2W$.
Definitions

Eigenvalue and eigenvector

An eigenvector \(\vec{x} \neq \vec{0} \) of a matrix \(A \in \mathbb{R}^{n \times n} \) is any vector satisfying \(A\vec{x} = \lambda \vec{x} \) for some \(\lambda \in \mathbb{R} \); the corresponding \(\lambda \) is known as an eigenvalue. Complex eigenvalues and eigenvectors satisfy the same relationships with \(\lambda \in \mathbb{C} \) and \(\vec{x} \in \mathbb{C}^n \).
Definitions

Eigenvalue and eigenvector

An eigenvalue $\vec{x} \neq \vec{0}$ of a matrix $A \in \mathbb{R}^{n \times n}$ is any vector satisfying $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$; the corresponding λ is known as an eigenvalue. Complex eigenvalues and eigenvectors satisfy the same relationships with $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{C}^n$.

Scale doesn’t matter!

$\rightarrow \|\vec{x}\| \equiv 1$
Definitions

Spectrum and spectral radius

The *spectrum* of A is the set of eigenvalues of A. The *spectral radius* $\rho(A)$ is the eigenvalue λ maximizing $|\lambda|$.
Eigenproblems in the Wild

- ODE/PDE problems
- Minimize/maximize $\| A\vec{x} \|$ such that $\| \vec{x} \| = 1$
- Rayleigh quotient:

$$\frac{\vec{x}^\top A\vec{x}}{\| \vec{x} \|^2}$$
Two Basic Properties

Proved in notes

Lemma

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.
Two Basic Properties

Proved in notes

Lemma

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Lemma

Eigenvectors corresponding to distinct eigenvalues must be linearly independent.
Two Basic Properties

Proved in notes

Lemma
Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Lemma
Eigenvectors corresponding to distinct eigenvalues must be linearly independent.

\rightarrow at most n eigenvalues
Nondefective

\(A \in \mathbb{R}^{n \times n} \) is nondefective or diagonalizable if its eigenvectors span \(\mathbb{R}^n \).
Diagonalizability

Nondefective

A $\in \mathbb{R}^{n \times n}$ is *nondefective* or *diagonalizable* if its eigenvectors span \mathbb{R}^n.

\[
D = X^{-1}AX
\]
Extending to $\mathbb{C}^{n \times n}$

Complex conjugate

The complex conjugate of a number $z = a + bi \in \mathbb{C}$ is $\bar{z} \equiv a - bi$.
Extending to $\mathbb{C}^{n \times n}$

Complex conjugate

The *complex conjugate* of a number $z = a + bi \in \mathbb{C}$ is $\bar{z} \equiv a - bi$.

Conjugate transpose

The *conjugate transpose* of $A \in \mathbb{C}^{m \times n}$ is $A^H \equiv \bar{A}^\top$.
Hermitian Matrix

\[A = A^H \]
Properties

Lemma

All eigenvalues of Hermitian matrices are real.
Lemma
All eigenvalues of Hermitian matrices are real.

Lemma
Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.
Spectral Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\vec{x}_1, \ldots, \vec{x}_n$ with (possibly repeated) eigenvalues $\lambda_1, \ldots, \lambda_n$.
Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\vec{x}_1, \ldots, \vec{x}_n$ with (possibly repeated) eigenvalues $\lambda_1, \ldots, \lambda_n$.

Full set: $D = X^\top AX$