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Today’s Task

Last time: Find f (x)

Today: Find
∫ b
a f (x) dx

and f ′(x)
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Motivation

erf(x) =
2√
π

∫ x

0

e−t
2

dt

Some functions are defined using integrals!
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Sampling from a Distribution

p(x) ∈ Prob([0, 1])

Cumulative distribution function (CDF):

F (t) ≡
∫ t

0

p(x) dx

X distributed uniformly in [0, 1] =⇒
F−1(X) distributed according to p
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Rendering

“Light leaving a surface is the integral of the

light coming in after it is reflected and diffused.”

Rendering equation
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Gaussian Blur

http://www.borisfx.com/images/bcc3/gaussian_blur.jpg
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Bayes’ Rule

P (X|Y ) =
P (Y |X)P (X)∫
P (Y |X)P (X) dY

Probability of X given Y
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Big Problem

“This leads to a situation where we are trying to
minimize an energy function that we cannot evaluate....
If we return to our field metaphor, we now find ourselves

in the field without any light whatsoever...., so we
cannot establish the height of any point in the field

relative to our own. CD effectively gives us a sense of
balance, allowing us to the feel the gradient of the field

under our feet.”
http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
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Quadrature

Quadrature
Given a sampling of n values f (x1), . . . , f (xn),

find an approximation of
∫ b
a f (x) dx.

xi’s may be fixed or may be chosen by the

algorithm (depends on context)
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Interpolatory Quadrature

∫ b

a

f(x) dx =

∫ b

a

[∑
i

aiφi(x)

]
dx

=
∑
i

ai

[∫ b

a

φi(x) dx

]
=
∑
i

ciai for ci ≡
∫ b

a

φi(x) dx
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Riemann Integral

∫ b

a

f(x) = lim
∆xk→0

∑
k

f(x̃k)(xk+1 − xk)

≈
∑
k

f(x̃k)∆xk
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Quadrature Rules

Q[f ] ≡
∑
i

wif (xi)

wi describes the
contribution of f (xi)
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Newton-Cotes Quadrature

xi’s evenly spaced in [a, b] and symmetric

I Closed: includes endpoints

xk ≡ a+
(k − 1)(b− a)

n− 1

I Open: does not include endpoints

xk ≡ a+
k(b− a)

n+ 1

CS 205A: Mathematical Methods Numerical Integration and Differentiation 13 / 34



Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Newton-Cotes Quadrature

xi’s evenly spaced in [a, b] and symmetric

I Closed: includes endpoints

xk ≡ a+
(k − 1)(b− a)

n− 1

I Open: does not include endpoints

xk ≡ a+
k(b− a)

n+ 1

CS 205A: Mathematical Methods Numerical Integration and Differentiation 13 / 34



Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Midpoint Rule

∫ b

a

f (x) dx ≈ (b− a)f

(
a + b

2

)
Open
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Trapezoidal Rule

∫ b

a

f (x) dx ≈ (b− a)
f (a) + f (b)

2

Closed
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Simpson’s Rule

∫ b

a

f(x) dx ≈ b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
Open; from quadratic interpolation
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Composite Rules

Apply rules on subintervals

∆x ≡ b− a
k

, xi ≡ a+ i∆x

Composite midpoint:∫ b

a

f(x) dx ≈
k∑

i=1

f

(
xi+1 + xi

2

)
∆x

CS 205A: Mathematical Methods Numerical Integration and Differentiation 17 / 34



Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite Rules

Apply rules on subintervals

∆x ≡ b− a
k

, xi ≡ a+ i∆x

Composite midpoint:∫ b

a

f(x) dx ≈
k∑

i=1

f

(
xi+1 + xi

2

)
∆x

CS 205A: Mathematical Methods Numerical Integration and Differentiation 17 / 34



Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite Rules

Composite trapezoid:

∫ b

a

f(x) dx ≈
k∑

i=1

(
f(xi) + f(xi+1)

2

)
∆x

= ∆x

(
1

2
f(a) + f(x1) + · · ·+ f(xk−1) +

1

2
f(b)

)
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Composite Rules

Composite Simpson:

∫ b

a

f(x) dx ≈ ∆x

3

f(a) + 2
n−2−1∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(b)


=

∆x

3
[f(a) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(b)]

n must be odd!
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Question

Which quadrature rule is
best?
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On a Single Interval

[On the board.]

I Midpoint and trapezoid:
O(∆x3)

I Simpson: O(∆x5)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 21 / 34



Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Composite

Width of subinterval is O( 1
∆x

)

I Midpoint and trapezoid:
O(∆x2)

I Simpson: O(∆x4)
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Other Strategies

I Gaussian quadrature: Optimize both wi’s

and xi’s; gets two times the accuracy (but

harder to use!)

I Adaptive quadrature: Choose xi’s where

information is needed (e.g. when quadrature

strategies do not agree)

CS 205A: Mathematical Methods Numerical Integration and Differentiation 23 / 34



Introduction Quadrature Newton-Cotes Accuracy More Quadrature Differentiation

Multivariable Integrals I

“Curse of dimensionality”∫
Ω

f (~x) d~x,Ω ⊆ Rn

I Iterated integral: Apply one-dimensional

strategy

I Subdivision: Fill with triangles/rectangles,

tetrahedra/boxes, etc.
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Multivariable Integrals II

I Monte Carlo: Randomly draw points in Ω

and average f (~x); converges like 1/
√
k

regardless of dimension
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Conditioning

|Q[f ]−Q[f̂ ]|
‖f − f̂‖∞

≤ ‖~w‖∞
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Differentiation

I Lack of stability
I Jacobians vs. f : R→ R
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Differentiation in Basis

f ′(x) =
∑
i

aiφ
′
i(x)

φ′i’s basis for derivatives; important for finite

element method!
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Definition of Derivative

f ′(x) ≡ lim
h→0

f (x + h)− f (x)

h
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O(h) Approximations

Forward difference:

f ′(x) ≈ f(x+ h)− f(x)

h

Backward difference:

f ′(x) ≈ f(x)− f(x− h)

h
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O(h2) Approximation

Centered difference:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
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O(h) Approximation of f ′′

Centered difference:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2

=
f(x+h)−f(x)

h
− f(x)−f(x−h)

h

h

Geometric interpretation
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Richardson Extrapolation

D(h) ≡ f(x+ h)− f(x)

h
= f ′(x) +

1

2
f ′′(x)h+O(h2)

D(αh) = f ′(x) +
1

2
f ′′(x)αh+O(h2)

(
f ′(x)
f ′′(x)

)
=

(
1 1

2
h

1 1
2
αh

)−1(
D(h)
D(αh)

)
+O(h2)
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Choosing h

I Too big: Bad approximation of f ′

I Too small: Numerical issues

(h small, f (x) ≈ f (x + h))

Next
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