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Part III: Nonlinear Problems

Not all numerical problems
can be solved with \ in

Matlab.

CS 205A: Mathematical Methods Nonlinear Systems 2 / 24



Nonlinearity Root-finding Bisection Fixed Point Iteration Newton’s Method Secant Method Conclusion

Question

Have we already seen a
nonlinear problem?

minimize ‖A~x‖2
such that ‖~x‖2 = 1←− nonlinear!
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Root-Finding Problem

Given: f : Rn→ Rm

Find: ~x∗ with f (~x∗) = ~0
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Issue: Regularizing Assumptions

f (x) =

{
−1 x ≤ 0
1 x > 0

f (x) =

{
−1 x ∈ Q
1 otherwise
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Typical Regularizing Assumptions
Continuous

f(~x)→ f(~y) as ~x→ ~y

Lipschitz

‖f(~x)− f(~y)‖ ≤ C‖~x− ~y‖

Differentiable

Df(~x) exists for all ~x

Ck

k derivatives exist and are continuous
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Today

f : R→ R
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Property of Continuous Functions

Intermediate Value Theorem
Suppose f : [a, b]→ R is continuous. Suppose

f (x) < u < f (y). Then, there exists z between

x and y such that f (z) = u.

Used in Homework 1!
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Reasonable Starting Point

f (`) · f (r) < 0
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Bisection Algorithm

1. Compute c = `+r/2.

2. If f (c) = 0, return x∗ = c.

3. If f (`) · f (c) < 0, take r ← c. Otherwise

take `← c.

4. Return to step ?? until |r − `| < ε; then

return c.
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Two Important Questions

1. Does it converge?

Yes! Unconditionally.

2. How quickly?

CS 205A: Mathematical Methods Nonlinear Systems 11 / 24



Nonlinearity Root-finding Bisection Fixed Point Iteration Newton’s Method Secant Method Conclusion

Two Important Questions

1. Does it converge?
Yes! Unconditionally.

2. How quickly?

CS 205A: Mathematical Methods Nonlinear Systems 11 / 24



Nonlinearity Root-finding Bisection Fixed Point Iteration Newton’s Method Secant Method Conclusion

Two Important Questions

1. Does it converge?
Yes! Unconditionally.

2. How quickly?

CS 205A: Mathematical Methods Nonlinear Systems 11 / 24



Nonlinearity Root-finding Bisection Fixed Point Iteration Newton’s Method Secant Method Conclusion

Convergence Analysis

Examine Ek with
|xk − x∗| < Ek.
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Bisection: Linear Convergence

Ek+1 ≤ 1
2Ek

for Ek ≡ |rk − `k|
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Fixed Points

g(x∗) = x∗

Question:
Same as root-finding?
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Simple Strategy

xk+1 = g(xk)
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Convergence Criterion

Ek ≡ |xk − x∗|
= |g(xk−1)− g(x∗)|

≤ C|xk−1 − x∗|
if g is Lipschitz

= CEk−1
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Alternative Criterion

Lipschitz near x∗ with good
starting point.

e.g. C1 with |g′(x∗)| < 1
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Convergence Rate of Fixed Point

When it converges...
Always linear (why?)

Often quadratic!
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Newton’s Method

xk+1 = xk −
f (xk)

f ′(xk)

Fixed point iteration on

g(x) ≡ x− f (x)

f ′(x)
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Convergence of Newton

Simple Root

A root x∗ with f ′(x∗) 6= 0.

Quadratic convergence in this case!

Higher-order approximations?
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Issue

Differentiation is hard!
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Secant Method

xk+1 = xk −
f (xk)(xk − xk−1)

f (xk)− f (xk−1)

Trivia:
Converges at rate 1+

√
5

2 ≈ 1.6180339887 . . .

(“Golden Ratio”)
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Hybrid Methods

Want: Convergence rate of secant/Newton with

convergence guarantees of bisection

e.g. Dekker’s Method: Take secant step if it is

in the bracket, bisection step otherwise
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Single-Variable Conclusion

I Unlikely to solve exactly, so we settle for

iterative methods
I Must check that method converges at all
I Convergence rates:

I Linear: Ek+1 ≤ CEk for some 0 ≤ C < 1
I Superlinear: Ek+1 ≤ CEr

k for some r > 1
I Quadratic: r = 2
I Cubic: r = 3

I Time per iteration also important

Next
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