Nonlinear Systems

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Part III: Nonlinear Problems

Not all numerical problems can be solved with \ in Matlab.

Question

Have we already seen a nonlinear problem?

Question

Have we already seen a nonlinear problem?

minimize
$$||A\vec{x}||_2$$

such that $||\vec{x}||_2 = 1 \leftarrow$ nonlinear!

Root-Finding Problem

Given: $f: \mathbb{R}^n \to \mathbb{R}^m$

Find: \vec{x}^* with $f(\vec{x}^*) = \vec{0}$

Issue: Regularizing Assumptions

$$f(x) = \begin{cases} -1 & x \le 0 \\ 1 & x > 0 \end{cases}$$

Issue: Regularizing Assumptions

$$f(x) = \begin{cases} -1 & x \le 0 \\ 1 & x > 0 \end{cases}$$

$$f(x) = \begin{cases} -1 & x \in \mathbb{Q} \\ 1 & \text{otherwise} \end{cases}$$

Continuous

$$f(\vec{x}) \to f(\vec{y}) \text{ as } \vec{x} \to \vec{y}$$

Continuous

$$f(\vec{x}) \to f(\vec{y}) \text{ as } \vec{x} \to \vec{y}$$

Lipschitz

$$||f(\vec{x}) - f(\vec{y})|| \le C||\vec{x} - \vec{y}||$$

Continuous

$$f(\vec{x}) \to f(\vec{y}) \text{ as } \vec{x} \to \vec{y}$$

Lipschitz

$$||f(\vec{x}) - f(\vec{y})|| \le C||\vec{x} - \vec{y}||$$

Differentiable

 $Df(\vec{x})$ exists for all \vec{x}

Continuous

$$f(\vec{x}) \to f(\vec{y}) \text{ as } \vec{x} \to \vec{y}$$

Lipschitz

$$||f(\vec{x}) - f(\vec{y})|| \le C||\vec{x} - \vec{y}||$$

Differentiable

 $Df(\vec{x})$ exists for all \vec{x}

 C^k

k derivatives exist and are continuous

Today

 $f: \mathbb{R} \to \mathbb{R}$

Property of Continuous Functions

Intermediate Value Theorem

Suppose $f:[a,b] \to \mathbb{R}$ is continuous. Suppose f(x) < u < f(y). Then, there exists z between x and y such that f(z) = u.

Property of Continuous Functions

Intermediate Value Theorem

Suppose $f:[a,b] \to \mathbb{R}$ is continuous. Suppose f(x) < u < f(y). Then, there exists z between x and y such that f(z) = u.

Used in Homework 1!

Reasonable Starting Point

$$f(\ell) \cdot f(r) < 0$$

Bisection Algorithm

- **1.** Compute $c = \ell + r/2$.
- **2.** If f(c) = 0, return $x^* = c$.
- **3.** If $f(\ell) \cdot f(c) < 0$, take $r \leftarrow c$. Otherwise take $\ell \leftarrow c$
- **4.** Return to step **??** until $|r \ell| < \varepsilon$; then return c.

Two Important Questions

1. Does it converge?

Two Important Questions

1. Does it converge? Yes! Unconditionally.

Two Important Questions

1. Does it converge? *Yes! Unconditionally.*

2. How quickly?

Conclusion

Convergence Analysis

Examine
$$E_k$$
 with $|x_k - x^*| < E_k$.

Bisection: Linear Convergence

$$E_{k+1} \le \frac{1}{2} E_k$$

for
$$E_k \equiv |r_k - \ell_k|$$

Fixed Points

$$g(x^*) = x^*$$

Fixed Points

$$g(x^*) = x^*$$

Question: Same as root-finding?

Simple Strategy

$$x_{k+1} = g(x_k)$$

Convergence Criterion

$$E_k \equiv |x_k - x^*| = |g(x_{k-1}) - g(x^*)|$$

Convergence Criterion

$$E_k \equiv |x_k - x^*|$$

$$= |g(x_{k-1}) - g(x^*)|$$

$$\leq C|x_{k-1} - x^*|$$
if g is Lipschitz
$$= CE_{k-1}$$

Alternative Criterion

Lipschitz *near* x^* with good starting point.

Alternative Criterion

Lipschitz *near* x^* with good starting point.

e.g.
$$C^1$$
 with $|g'(x^*)| < 1$

Convergence Rate of Fixed Point

When it converges...
Always linear (why?)

Conclusion

Convergence Rate of Fixed Point

When it converges...
Always linear (why?)

Often quadratic!

Newton's Method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Newton's Method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Fixed point iteration on

$$g(x) \equiv x - \frac{f(x)}{f'(x)}$$

Convergence of Newton

Simple Root

A root x^* with $f'(x^*) \neq 0$.

Convergence of Newton

Simple Root

A root x^* with $f'(x^*) \neq 0$.

Quadratic convergence in this case!

Convergence of Newton

Simple Root

A root x^* with $f'(x^*) \neq 0$.

Quadratic convergence in this case!

Higher-order approximations?

Issue

Differentiation is hard!

Secant Method

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Secant Method

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Trivia:

Converges at rate $\frac{1+\sqrt{5}}{2} \approx 1.6180339887...$

Secant Method

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Trivia:

Converges at rate $\frac{1+\sqrt{5}}{2}\approx 1.6180339887...$ ("Golden Ratio")

Hybrid Methods

Want: Convergence rate of secant/Newton with convergence guarantees of bisection

Hybrid Methods

Want: Convergence rate of secant/Newton with convergence guarantees of bisection

e.g. **Dekker's Method:** Take secant step if it is in the bracket, bisection step otherwise

Single-Variable Conclusion

- Unlikely to solve exactly, so we settle for iterative methods
- Must check that method converges at all
- Convergence rates:
 - ▶ Linear: $E_{k+1} \le CE_k$ for some $0 \le C < 1$
 - ▶ Superlinear: $E_{k+1} \le CE_k^r$ for some r > 1
 - Quadratic: r=2
 - Cubic: r = 3
- Time per iteration also important

