Numerics and Error Analysis

CS 205A:
Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon
Prototypical Example

double x = 1.0;
double y = x / 3.0;
if (x == y*3.0) cout << "They are equal!";
else cout << "They are NOT equal.";
Take-Away

Mathematically correct ≠ Numerically sound
Using Tolerances

double x = 1.0;
double y = x / 3.0;
if (fabs(x-y*3.0) <
 numeric_limits<double>::epsilon)
 cout << "They are equal!";
else cout << "They are NOT equal.";
Counting in Binary: Integer

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^8</td>
<td>2^7</td>
<td>2^6</td>
<td>2^5</td>
<td>2^4</td>
<td>2^3</td>
<td>2^2</td>
<td>2^1</td>
<td>2^0</td>
</tr>
</tbody>
</table>
Counting in Binary: Fractional

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1.</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^8</td>
<td>2^7</td>
<td>2^6</td>
<td>2^5</td>
<td>2^4</td>
<td>2^3</td>
<td>2^2</td>
<td>2^1</td>
<td>2^0</td>
<td>2^{-1}</td>
</tr>
</tbody>
</table>
Familiar Problem

\[\frac{1}{3} = 0.010101010101\ldots_2 \]

Finite number of bits
Fixed-Point Arithmetic

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0.</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2^ℓ</td>
<td>$2^{\ell-1}$</td>
<td>...</td>
<td>2^0</td>
<td>2^{-1}</td>
<td>...</td>
</tr>
<tr>
<td>2^{-k+1}</td>
<td>2^{-k}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Parameters: $k, \ell \in \mathbb{Z}$
- $k + \ell$ digits total
- Can reuse integer arithmetic (fast; GPU possibility)
Two-Digit Example

\[0.1_2 \times 0.1_2 = 0.01_2 \approx 0.02\]

Multiplication and division easily change order of magnitude!
Demand of Scientific Applications

\[9.11 \times 10^{-31} \rightarrow 6.022 \times 10^{23} \]

Desired: Graceful transition
Observations

Compactness matters:

\[6.022 \times 10^{23} = 602,200,000,000,000,000,000,000 \]
Observations

- Compactness matters:
 \[6.022 \times 10^{23} = 602,200,000,000,000,000,000,000 \]

- Some operations are unlikely:
 \[6.022 \times 10^{23} + 9.11 \times 10^{-31} \]
Scientific Notation

Store significant digits

\[\pm (d_0 + d_1 \cdot \beta^{-1} + d_2 \cdot \beta^{-2} + \cdots + d_{p-1} \cdot \beta^{1-p}) \times \beta^b \]

- **Base**: \(\beta \in \mathbb{N} \)
- **Precision**: \(p \in \mathbb{N} \)
- **Range of exponents**: \(b \in [L, U] \)
Properties of Floating Point

- Unevenly spaced
 - Machine precision ε_m: smallest ε_m with $1 + \varepsilon_m \neq 1$
Properties of Floating Point

- Unevenly spaced
 - Machine precision ε_m: smallest ε_m with $1 + \varepsilon_m \not\sim 1$
- Needs rounding rule
 (e.g. “round to nearest, ties to even”)

Motivation

Representing Numbers

Exotic Representations

Error

Practical Aspects

CS 205A: Mathematical Methods

Numerics and Error Analysis

13 / 28
Properties of Floating Point

- Unevenly spaced
 - Machine precision ε_m: smallest ε_m with $1 + \varepsilon_m \not\approx 1$

- Needs rounding rule
 (e.g. “round to nearest, ties to even”)

- Can remove leading 1
Infinite Precision

\[\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \right\} \]

- Simple rules: \(\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd} \)
- Exact equality possible again
Infinite Precision

\[\mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z} \} \]

- Simple rules: \[\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd} \]
- Exact equality possible again
- Redundant: \[\frac{1}{2} = \frac{2}{4} \]
- Restricted set of operations

Have to decide ahead of time!
Motivation

Representing Numbers

Exotic Representations

Error

Practical Aspects

Bracketing

Store range $a \pm \varepsilon$

- Keeps track of certainty and rounding decisions
- Easy bounds:

$$(x \pm \varepsilon_1) + (y \pm \varepsilon_2) = (x + y) \pm (\varepsilon_1 + \varepsilon_2 + \text{error}(x + y))$$

- Implementation via operator overloading
Sources of Error

- Truncation
- Discretization
- Modeling
- Empirical constants
- User input
Example

What sources of error might affect a financial simulation?
Absolute vs. Relative Error

Absolute Error

The *difference* between the approximate value and the underlying true value
Absolute vs. Relative Error

Absolute Error
The *difference* between the approximate value and the underlying true value

Relative Error
Absolute error *divided* by the true value
Absolute vs. Relative Error

Absolute Error

The *difference* between the approximate value and the underlying true value

Relative Error

Absolute error *divided* by the true value

\[
\begin{align*}
2\text{ in } \pm 0.02\text{ in} \\
2\text{ in } \pm 1\%
\end{align*}
\]
Relative Error: Difficulty

Problem: True value unknown
Relative Error: Difficulty

Problem: True value unknown

Common fix: Be conservative
Root-finding problem

For $f : \mathbb{R} \rightarrow \mathbb{R}$, find x^* such that $f(x^*) = 0$.

Actual output: x_{est} with $|f(x_{est})| \ll 1$
Backward Error

The amount a problem statement would have to change to realize a given approximation of its solution.
Backward Error

The amount a problem statement would have to change to realize a given approximation of its solution

Example 1: \sqrt{x}
Backward Error

Backward Error
The amount a problem statement would have to change to realize a given approximation of its solution

Example 1: \sqrt{x}

Example 2: $A\vec{x} = \vec{b}$
Conditioning

Well-conditioned:
Small backward error \Rightarrow small forward error

Poorly conditioned:
Otherwise

Example: Root-finding
Condition Number

Condition number
Ratio of forward to backward error
Condition Number

Condition number

Ratio of forward to backward error

Root-finding example:

\[
\frac{1}{f'(x^*)}
\]
Extremely careful implementation can be necessary.
Example: \[\| \vec{x} \|_2 \]

double normSquared = 0;
for (int i = 0; i < n; i++)
 normSquared += x[i]*x[i];
return sqrt(normSquared);
Improved $\| \vec{x} \|_2$

double maxElement = epsilon;

for (int i = 0; i < n; i++)
 maxElement = max(maxElement, fabs(x[i]));

for (int i = 0; i < n; i++) {
 double scaled = x[i] / maxElement;
 normSquared += scaled*scaled;
}

return sqrt(normSquared) * maxElement;
More Involved Example: \[\sum_{i} x_i \]

double sum = 0;
for (int i = 0; i < n; i++)
 sum += x[i];
Motivation for Kahan Algorithm

\[((a + b) - a) - b \neq 0\]

Store compensation value!

Details in course notes