Introduction	Initial Value Problems	Theory	Model Equations	Simple Integration
000	00000	0000000	0000	000000

Ordinary Differential Equations I

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

CS 205A: Mathematical Methods

Ordinary Differential Equations I

Introduction • 0 0 Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Theme of Last Three Weeks

The unknown is an entire function f.

CS 205A: Mathematical Methods

Ordinary Differential Equations I

2 / 27

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

New Twist

So far: f (or its derivative/integral) known at isolated points

CS 205A: Mathematical Methods

Ordinary Differential Equations I

э

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

New Twist

So far: f (or its derivative/integral) known at isolated points

Instead: Optimize *properties* of f

CS 205A: Mathematical Methods

Ordinary Differential Equations I

3 / 27

・ロト ・部ト ・ヨト ・ヨト

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Example Problems

Approximate f₀ with f but make it smoother (or sharper!)

CS 205A: Mathematical Methods

Ordinary Differential Equations I

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Example Problems

- Approximate f₀ with f but make it smoother (or sharper!)
- Simulate a particle system obeying a physical law

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Example Problems

- Approximate f₀ with f but make it smoother (or sharper!)
- Simulate a particle system obeying a physical law
- ► Approximate f₀ with f but transfer properties of g₀

Initial Value Problems

Introduction

Theory 00000000 Model Equations

Simple Integration

Today: Initial Value Problems

Find $f(t) : \mathbb{R} \to \mathbb{R}^n$ Satisfying $F[t, f(t), f'(t), f''(t), \dots, f^{(k)}(t)] = 0$ Given $f(0), f'(0), f''(0), \dots, f^{(k-1)}(0)$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

5 / 27

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Most Famous Example

F = ma

Newton's second law

CS 205A: Mathematical Methods

Ordinary Differential Equations I

6 / 27

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Most Famous Example

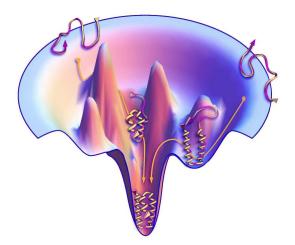
F = ma

Newton's second law n particles \implies simulation in \mathbb{R}^{3n}

CS 205A: Mathematical Methods

Ordinary Differential Equations I

6 / 27


Initial Value Problems

Theory

Model Equations

Simple Integration

Protein Folding

http://www.sciencedaily.com/releases/2012/11/121122152910.htm

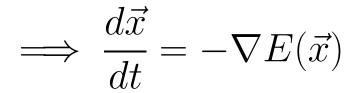
CS 205A: Mathematical Methods

Ordinary Differential Equations I

7 / 27

★ ∃ > _ ∃

▲□▶ ▲圖▶ ▲厘▶


Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Gradient Descent

 $\min_{\vec{x}} E(\vec{x})$

Initial Value Problems

Theory

Model Equations

Simple Integration

Crowd Simulation

http://video.wired.com/watch/building-a-better-zombie-wwz-exclusive

http://gamma.cs.unc.edu/DenseCrowds/

CS 205A: Mathematical Methods

Ordinary Differential Equations I

9 / 27

イロト 不得 トイヨト イヨト 二日

Initial Value Problems

Theory •0000000 Model Equations

Simple Integration

Examples of ODEs

• $y' = 1 + \cos t$: solved by integrating both sides

CS 205A: Mathematical Methods

Ordinary Differential Equations I

10 / 27

イロト 不得 トイヨト イヨト 二日

Initial Value Problems

Theory •0000000 Model Equations

Simple Integration

Examples of ODEs

y' = 1 + cos t: solved by integrating both sides
y' = ay: linear in y

CS 205A: Mathematical Methods

Ordinary Differential Equations I

10 / 27

イロト 不得 トイヨト イヨト 二日

Initial Value Problems

Theory •0000000 Model Equations

Simple Integration

Examples of ODEs

- y' = 1 + cos t: solved by integrating both sides
 y' = ay: linear in y
- $y' = ay + e^t$: time and position-dependent

Initial Value Problems

Theory •0000000 Model Equations

Simple Integration

Examples of ODEs

- y' = 1 + cos t: solved by integrating both sides
 y' = ay: linear in y
- $y' = ay + e^t$: time and position-dependent
- y'' + 3y' y = t: multiple derivatives of y

Initial Value Problems

Theory •0000000 Model Equations

Simple Integration

Examples of ODEs

- y' = 1 + cos t: solved by integrating both sides
 y' = ay: linear in y
- $y' = ay + e^t$: time and position-dependent
- y'' + 3y' y = t: multiple derivatives of y
- $y'' \sin y = e^{ty'}$: nonlinear in y and t.

Initial Value Problems

Theory

Model Equations

Simple Integration

Reasonable Assumption

Explicit ODE An ODE is *explicit* if can be written in the form $f^{(k)}(t) = F[t, f(t), f'(t), f''(t), \dots, f^{(k-1)}(t)].$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

11 / 27

・ロト ・聞 ト ・ ヨト ・ ヨト

Initial Value Problems

Theory

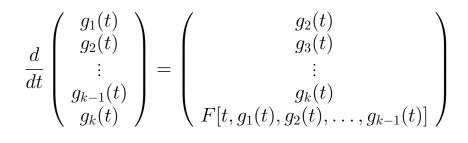
Model Equations

Simple Integration

Reasonable Assumption

Explicit ODE An ODE is *explicit* if can be written in the form $f^{(k)}(t) = F[t, f(t), f'(t), f''(t), \dots, f^{(k-1)}(t)].$

Otherwise need to do root-finding!


・ロト ・聞 ト ・ ヨト ・ ヨト

Initial Value Problems

Theory 0000000 Model Equations

Simple Integration

Reduction to First Order

Introduction	
000	

Initial Value Problems

Theory 000●0000 Model Equations

Simple Integration

Example

$$y''' = 3y'' - 2y' + y$$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

13 / 27

メロトメ 御下 メヨトメヨト 三臣

Introduction	Initial Value Problems	Theory 000●0000	Model Equations	Simple Integration

Example

$$y''' = 3y'' - 2y' + y$$

$$\frac{d}{dt} \begin{pmatrix} y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} y \\ z \\ w \end{pmatrix}$$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

13 / 27

2

・ロト ・部ト ・ヨト ・ヨト

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Autonomous ODE

$$\vec{y'} = F[\vec{y}]$$

No dependence of ${\cal F}$ on t

CS 205A: Mathematical Methods

Ordinary Differential Equations I

14 / 27

э

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Autonomous ODE

$$\vec{y'} = F[\vec{y}]$$

No dependence of ${\cal F}$ on t

$$g'(t) = \begin{pmatrix} f'(t) \\ \bar{g}'(t) \end{pmatrix} = \begin{pmatrix} F[f(t), \bar{g}(t)] \\ 1 \end{pmatrix}$$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

14 / 27

э

Initial Value Problems

Theory

Model Equations

Simple Integration

Two Visualizations

Slope fieldPhase space

CS 205A: Mathematical Methods

Ordinary Differential Equations I

15 / 27

Initial Value Problems

Theory

Model Equations

Simple Integration

Existence and Uniqueness

 $\frac{dy}{dt} = 2y/t$

Two cases: y(0) = 0, $y(0) \neq 0$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

16 / 27

Initial Value Problems

Theory

Model Equations

Simple Integration

Existence and Uniqueness

Theorem: Local existence and uniqueness

Suppose F is continuous and Lipschitz, that is, $\|F[\vec{y}] - F[\vec{x}]\|_2 \le L \|\vec{y} - \vec{x}\|_2$ for some L. Then, the ODE f'(t) = F[f(t)] admits exactly one solution for all $t \ge 0$ regardless of initial conditions.

くロト く得ト くほト くほとう

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Linearization of 1D ODEs

y' = F[y]

CS 205A: Mathematical Methods

Ordinary Differential Equations I

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Linearization of 1D ODEs

y' = F[y]

$\longrightarrow y' = ay + b$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Linearization of 1D ODEs

$$y' = F[y]$$

$\longrightarrow y' = ay + b$

$$\longrightarrow \bar{y}' = a\bar{y}$$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Model Equation

y' = ay

CS 205A: Mathematical Methods

Ordinary Differential Equations I

19 / 27

3

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Model Equation

y' = ay

 $\implies y(t) = Ce^{at}$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Three Cases

$$y' = ay, y(t) = Ce^{at}$$

1. a = 0: Stable

CS 205A: Mathematical Methods

Ordinary Differential Equations I

20 / 27

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Three Cases

$$y' = ay, y(t) = Ce^{at}$$

a = 0: Stable a < 0: Stable; solutions get closer

CS 205A: Mathematical Methods

Ordinary Differential Equations I

20 / 27

Э

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Three Cases

$$y' = ay, y(t) = Ce^{at}$$

1. a = 0: Stable

- **2.** a < 0: Stable; solutions get closer
- **3.** *a* > 0: Unstable; mistakes in initial data amplified

・ロト ・聞 ト ・ ヨト ・ ヨトー

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Multidimensional Case

$$\vec{y'} = A\vec{y}, A\vec{y_i} = \lambda_i \vec{y_i}$$
$$\vec{y}(0) = \sum_i c_i \vec{y_i}$$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

21 / 27

3

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Multidimensional Case

$$\vec{y}' = A\vec{y}, A\vec{y}_i = \lambda_i \vec{y}_i$$
$$\vec{y}(0) = \sum_i c_i \vec{y}_i$$
$$\implies \vec{y}(t) = \sum_i c_i e^{\lambda_i t} \vec{y}_i$$

CS 205A: Mathematical Methods

Ordinary Differential Equations I

21 / 27

3

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Multidimensional Case

$$\vec{y}' = A\vec{y}, A\vec{y}_i = \lambda_i \vec{y}_i$$
$$\vec{y}(0) = \sum_i c_i \vec{y}_i$$
$$\implies \vec{y}(t) = \sum_i c_i e^{\lambda_i t} \vec{y}_i$$

Stability depends on $\max_i |\lambda_i|$.

CS 205A: Mathematical Methods

Ordinary Differential Equations I

21 / 27

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Integration Strategies

Given \vec{y}_k at time t_k , generate \vec{y}_{k+1} assuming $\vec{y'} = F[\vec{y}]$.

CS 205A: Mathematical Methods

Ordinary Differential Equations I

22 / 27

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Forward Euler

$$\vec{y}_{k+1} = \vec{y}_k + hF[\vec{y}_k]$$

- Explicit method
- $O(h^2)$ localized truncation error
- O(h) global truncation error;
 "first order accurate"

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Model Equation

$$y' = ay \longrightarrow y_{k+1} = (1 + ah)y_k$$

For $a < 0$, stable when $h < \frac{2}{|a|}$.

CS 205A: Mathematical Methods

Ordinary Differential Equations I

24 / 27

3

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト …

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Backward Euler

$$\vec{y}_{k+1} = \vec{y}_k + hF[\vec{y}_{k+1}]$$

- Implicit method
- $O(h^2)$ localized truncation error
- O(h) global truncation error;
 "first order accurate"

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Model Equation

$$y' = ay \longrightarrow y_{k+1} = \frac{1}{1 - ah}y_k$$

Unconditionally stable!

CS 205A: Mathematical Methods

Ordinary Differential Equations I

26 / 27

э

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Model Equation

$$y' = ay \longrightarrow y_{k+1} = \frac{1}{1 - ah}y_k$$

Unconditionally stable! But this has nothing to do with accuracy.

CS 205A: Mathematical Methods

Ordinary Differential Equations I

26 / 27

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Model Equation

$$y' = ay \longrightarrow y_{k+1} = \frac{1}{1 - ah}y_k$$

Unconditionally stable! But this has nothing to do with accuracy.

Good for *stiff* equations.

CS 205A: Mathematical Methods

Ordinary Differential Equations I

26 / 27

- 4 同 ト 4 ヨ ト 4 ヨ ト

Initial Value Problems

Theory 00000000 Model Equations

Simple Integration

Forward and Backward Euler on Linear ODE

$$\vec{y'} = A\vec{y}$$

Forward Euler: ÿ_{k+1} = (I + hA)ÿ_k
 Backward Euler: ÿ_{k+1} = (I − hA)⁻¹ÿ_k

▶ Next

CS 205A: Mathematical Methods

Ordinary Differential Equations I

27 / 27