Optimization I: Motivation, **One-Variable Algorithms**

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Optimization Objectives

Problem	Objective
Least-squares	$E(\vec{x}) = A\vec{x} - \vec{b} ^2$
Project $ec{b}$ onto $ec{a}$	$E(c) = \ c\vec{a} - \vec{b}\ $
Eigenvectors of symmetric matrix	$E(\vec{x}) = \vec{x}^{\top} A \vec{x}$
Pseudoinverse	$\mid E(\vec{x}) = \vec{x} ^2$
Principal components analysis	$E(C) = X - CC^{\top}X _{\text{Fro}}$
Broyden step	$E(J_k) = J_k - J_{k-1} _{Fro}^2$

Optimization Constraints

Problem	Constraints
Least-squares	None
Project $ec{b}$ onto $ec{a}$	None
Eigenvectors of symmetric matrix	$ \vec{x} = 1$
Pseudoinverse	$A^{\top}A\vec{x} = A^{\top}\vec{b}$
Principal components analysis	$C^{\top}C = I_{d \times d}$
Broyden step	$J_k \cdot \Delta \vec{x} = \Delta f(\vec{x})$

Motivation

Define energy measuring desirable properties and attempt to minimize it.

General Motivation

So far:

Optimality conditions solvable in closed form

General Motivation

So far:

Optimality conditions solvable in closed form

What if:

We're not so lucky?

Optimization Problems

Today

$$\min_{\vec{x}} f(\vec{x})$$

No constraints on \vec{x} .

Optimization Problems

Nonlinear Least-Squares

Motivation

000

E.g. for fitting an exponential:

$$E(a,c) = \sum_{i} (y_i - ce^{ax_i})^2$$

$$g(h; \mu, \sigma) \equiv \frac{1}{\sigma \sqrt{2\pi}} e^{-(h-\mu)^2/2\sigma^2}$$

Maximum Likelihood Estimation

$$g(h; \mu, \sigma) \equiv \frac{1}{\sigma\sqrt{2\pi}} e^{-(h-\mu)^2/2\sigma^2}$$

↓ (independent sample)

$$P(\{h_1,\ldots,h_n\};\mu,\sigma)=\prod_i g(h_i;\mu,\sigma)$$

Maximum Likelihood Estimation

$$g(h; \mu, \sigma) \equiv \frac{1}{\sigma \sqrt{2\pi}} e^{-(h-\mu)^2/2\sigma^2}$$

↓ (independent sample)

$$P(\{h_1,\ldots,h_n\};\mu,\sigma)=\prod_i g(h_i;\mu,\sigma)$$

Estimate μ and σ .

Maximum Likelihood Estimation

$$g(h; \mu, \sigma) \equiv \frac{1}{\sigma \sqrt{2\pi}} e^{-(h-\mu)^2/2\sigma^2}$$

↓ (independent sample)

$$P(\{h_1,\ldots,h_n\};\mu,\sigma)=\prod_i g(h_i;\mu,\sigma)$$

Estimate μ and σ .

$$\max_{\mu,\sigma} P(\{h_1,\ldots,h_n\};\mu,\sigma)$$

Geometric Median Problem

$$E(\vec{x}) \equiv \sum_{i} \|\vec{x} - \vec{x}_i\|_2$$

No square!

What are we looking for?

Global minimum

 $\vec{x}^* \in \mathbb{R}^n$ is a global minimum of $f: \mathbb{R}^n \to R$ if $f(\vec{x}^*) \leq f(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$.

What are we looking for?

Global minimum

 $\vec{x}^* \in \mathbb{R}^n$ is a global minimum of $f: \mathbb{R}^n \to R$ if $f(\vec{x}^*) \leq f(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$.

Local minimum

 $\vec{x}^* \in \mathbb{R}^n$ is a *local minimum* of $f: \mathbb{R}^n \to R$ if $f(\vec{x}^*) \leq f(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$ satisfying $\|\vec{x} - \vec{x}^*\| < \varepsilon$ for some $\varepsilon > 0$.

$$f(\vec{x}) \approx f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0)$$

$$f(\vec{x}) \approx f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0)$$

Take:
$$\vec{x} - \vec{x}_0 = \alpha \nabla f(\vec{x}_0)$$
:

$$f(\vec{x}_0 + \alpha \nabla f(\vec{x}_0)) \approx f(\vec{x}_0) + \alpha \|\nabla f(\vec{x}_0)\|^2$$

Differential Optimality

$$f(\vec{x}) \approx f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0)$$

Take:
$$\vec{x} - \vec{x}_0 = \alpha \nabla f(\vec{x}_0)$$
:
$$f(\vec{x}_0 + \alpha \nabla f(\vec{x}_0)) \approx f(\vec{x}_0) + \alpha \|\nabla f(\vec{x}_0)\|^2$$

When $\|\nabla f(\vec{x}_0)\| > 0$, the sign of α determines whether f increases or decreases.

Stationary Point

$$\nabla f(\vec{x}_0) = \vec{0}$$

Doesn't change to first order

Typical Strategy

- 1. Find critical point(s)
 - 2. Check if its a local minimum
 - 3. Repeat [optional]

Hessian

$$H_f(\vec{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial^2 x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial^2 x_n} \end{pmatrix}$$

Hessian-Based Optimality

$$f(\vec{x}) \approx f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0) + \frac{1}{2} (\vec{x} - \vec{x}_0)^{\top} H_f(\vec{x} - \vec{x}_0)$$

Hessian-Based Optimality

$$f(\vec{x}) \approx f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0) + \frac{1}{2} (\vec{x} - \vec{x}_0)^{\top} H_f(\vec{x} - \vec{x}_0)$$

- ullet H_f is *positive definite* \Longrightarrow local minimum
- ullet H_f is negative definite \Longrightarrow local maximum
- H_f is indefinite \Longrightarrow saddle point
- H_f is not invertible \Longrightarrow

Hessian-Based Optimality

$$f(\vec{x}) \approx f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0) + \frac{1}{2} (\vec{x} - \vec{x}_0)^{\top} H_f(\vec{x} - \vec{x}_0)$$

- $ightharpoonup H_f$ is *positive definite* \Longrightarrow local minimum
- $ightharpoonup H_f$ is negative definite \Longrightarrow local maximum
- H_f is *indefinite* \Longrightarrow saddle point
- H_f is not invertible \Longrightarrow **nothing**

Alternative Optimality

Convex

 $\begin{array}{l} f:\mathbb{R}^m \to \mathbb{R} \text{ is } \textit{convex} \text{ when for all } \vec{x}, \vec{y} \in \mathbb{R}^m \text{ and} \\ \alpha \in (0,1) \text{, } f((1-\alpha)\vec{x} + \alpha\vec{y}) \leq (1-\alpha)f(\vec{x}) + \alpha f(\vec{y}). \end{array}$

Alternative Optimality

Convex

 $f: \mathbb{R}^m \to \mathbb{R}$ is *convex* when for all $\vec{x}, \vec{y} \in \mathbb{R}^m$ and $\alpha \in (0,1)$, $f((1-\alpha)\vec{x} + \alpha\vec{y}) \leq (1-\alpha)f(\vec{x}) + \alpha f(\vec{y})$.

Quasi-Convex

 $f: \mathbb{R}^m \to \mathbb{R}$ is *convex* when for all $\vec{x}, \vec{y} \in \mathbb{R}^m$ and $\alpha \in (0,1)$, $f((1-\alpha)\vec{x} + \alpha\vec{y}) \leq \max(f(\vec{x}), f(\vec{y}))$.

Minimize $f \leftrightarrow \text{find roots of } f'$

Optimization Problems

Newton's Method

 $\text{Minimize } f \leftrightarrow \text{find roots of } f'$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Newton's Method

Minimize $f \leftrightarrow$ find roots of f'

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Question:

What do you need for secant?

Minimize $f \leftrightarrow \text{find roots of } f'$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Question:

What do you need for secant?

Alternative: Successive parabolic interpolation

Imitate Bisection?

Question:

Analog of Intermediate Value Theorem?

Question:

Analog of Intermediate Value Theorem?

Unimodular

 $f:[a,b]\to\mathbb{R}$ is unimodular if there exists $x^* \in [a, b]$ such that f is decreasing for $x \in [a, x^*]$ and increasing for $x \in [x^*, b]$.

Observations about Unimodular Functions

- $f(x_0) \ge f(x_1) \implies f(x) \ge f(x_1)$ for all $x \in [a, x_0] \implies [a, x_0]$ can be discarded
- $f(x_1) \ge f(x_0) \implies f(x) \ge f(x_0)$ for all $x \in [x_1, b] \implies [x_1, b]$ can be discarded

Unimodular Optimization v1.0

Iteratively remove 1/3 of interval in each iteration.

Unimodular Optimization v1.0

Iteratively remove 1/3 of interval in each iteration.

Requires two evaluations per iteration.

$$x_0 = \alpha \quad x_1 = 1 - \alpha$$
$$\alpha \in (0, 1/2)$$

Reuse Evaluations?

$$x_0 = \alpha \quad x_1 = 1 - \alpha$$
$$\alpha \in (0, 1/2)$$

Remove right interval $[x_1, b]$ \longrightarrow new interval is $[0, 1 - \alpha]$.

Reuse Evaluations?

$$x_0 = \alpha \quad x_1 = 1 - \alpha$$
$$\alpha \in (0, 1/2)$$

Remove right interval $|x_1, b|$ \longrightarrow new interval is $[0, 1-\alpha]$.

New bounds:

$$\tilde{x}_0 = \alpha (1 - \alpha)$$

$$\tilde{x}_1 = (1 - \alpha)^2$$

Reuse Evaluations?

To reuse:
$$(1 - \alpha)^2 = \alpha$$

$$\implies \alpha = \frac{1}{2}(3 - \sqrt{5})$$
$$1 - \alpha = \frac{1}{2}(\sqrt{5} - 1) \equiv \tau$$

Optimization Problems

To reuse:
$$(1 - \alpha)^2 = \alpha$$

$$\implies \alpha = \frac{1}{2}(3 - \sqrt{5})$$
$$1 - \alpha = \frac{1}{2}(\sqrt{5} - 1) \equiv \tau$$

Golden ratio...

Optimization Problems

Golden Section Search

- **1.** Initialize a and b so that f is unimodular on [a, b].
- 2. Take $x_0 = a + (1 \tau)(b a), x_1 = a + \tau(b a);$ initialize $f_0 = f(x_0), f_1 = f(x_1).$
- **3.** Iterate until b-a is sufficiently small:
 - **3.1** If $f_0 \ge f_1$, then remove the interval $[a, x_0]$:
 - ▶ Move left side: $a \leftarrow x_0$
 - ▶ Reuse previous iteration: $x_0 \leftarrow x_1$, $f_0 \leftarrow f_1$
 - ▶ Generate new sample: $x_1 \leftarrow a + \tau(b-a)$, $f_1 \leftarrow f(x_1)$
 - **3.2** If $f_1 > f_0$, then remove the interval $[x_1, b]$:
 - ▶ Move right side: $b \leftarrow x_1$
 - ▶ Reuse previous iteration: $x_1 \leftarrow x_0$, $f_1 \leftarrow f_0$
 - ▶ Generate new sample: $x_0 \leftarrow a + (1 \tau)(b a)$, $f_0 \leftarrow f(x_0)$

