Optimization III: Constrained Optimization

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

minimize
$$f(\vec{x})$$

such that $g(\vec{x}) = \vec{0}$
 $h(\vec{x}) \ge \vec{0}$

Really Difficult!

Simultaneously:

- Minimizing f
- ullet Finding roots of g
- Finding feasible points of h

Implicit Projection

Implicit surface: $g(\vec{x}) = 0$

Implicit Projection

Implicit surface: $g(\vec{x}) = 0$

minimize
$$\|\vec{x} - \vec{x}_0\|$$

such that $g(\vec{x}) = \vec{0}$

Manufacturing

ightharpoonup m materials

- \triangleright s_i units of material i in stock
- ▶ *n* products
- p_i profit for product j
- Product j uses c_{ij} units of material i

maximize
$$\bar{x}$$
 $\sum_{j} p_{j} x_{j}$
such that $x_{j} \geq 0 \ \forall j$
 $\sum_{i} c_{ij} x_{j} \leq s_{i} \ \forall i$

"Maximize profits where you make a positive amount of each product and use limited material."

Nonnegative Least-Squares

minimize
$$\vec{x} ||A\vec{x} - \vec{b}||_2^2$$

such that $\vec{x} \ge \vec{0}$

Feasible point and feasible set

A feasible point is any point \vec{x} satisfying $g(\vec{x}) = \vec{0}$ and $h(\vec{x}) \geq \vec{0}$. The feasible set is the set of all points \vec{x} satisfying these constraints.

Basic Definitions

Feasible point and feasible set

A feasible point is any point \vec{x} satisfying $g(\vec{x}) = \vec{0}$ and $h(\vec{x}) \geq \vec{0}$. The feasible set is the set of all points \vec{x} satisfying these constraints.

Critical point of constrained optimization

A critical point is one satisfying the constraints that also is a local maximum, minimum, or saddle point of f within the feasible set.

Differential Optimality

Without *h*:

$$\Lambda(\vec{x}, \vec{\lambda}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x})$$

Lagrange Multipliers

Inequality Constraints at \vec{x}^*

Two cases:

- Active: $h_i(\vec{x}^*) = 0$ Optimum might change if constraint is removed
- Inactive: $h_i(\vec{x}^*) > 0$ Removing constraint does not change \vec{x}^* locally

Idea

Remove inactive constraints and make active constraints equality constraints.

$$\Lambda(\vec{x}, \vec{\lambda}, \vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x})$$

No longer a critical point! But if we ignore that:

$$\vec{0} = \nabla f(\vec{x}) - \sum_{i} \lambda_{i} \nabla g_{i}(\vec{x}) - \sum_{j} \mu_{j} \nabla h_{j}(\vec{x})$$

Optimality

$$\Lambda(\vec{x}, \vec{\lambda}, \vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x})$$

No longer a critical point! But if we ignore that:

$$\vec{0} = \nabla f(\vec{x}) - \sum_{i} \lambda_{i} \nabla g_{i}(\vec{x}) - \sum_{j} \mu_{j} \nabla h_{j}(\vec{x})$$

$$\mu_j h_j(\vec{x}) = \vec{0}$$

Zero out inactive constraints!

Inequality Direction

So far: Have not distinguished between $h_i(\vec{x}) \geq 0$ and $h_i(\vec{x}) \leq 0$

Inequality Direction

So far: Have not distinguished between $h_i(\vec{x}) \geq 0$ and $h_i(\vec{x}) \leq 0$

- ▶ Direction to decrease $f: -\nabla f(\vec{x}^*)$
- ▶ Direction to decrease h_i : $-\nabla h_i(\vec{x}^*)$

Inequality Direction

So far: Have not distinguished between $h_i(\vec{x}) > 0$ and $h_i(\vec{x}) < 0$

- ▶ Direction to decrease $f: -\nabla f(\vec{x}^*)$
- ▶ Direction to decrease h_i : $-\nabla h_i(\vec{x}^*)$

$$\nabla f(\vec{x}^*) \cdot \nabla h_j(\vec{x}^*) \ge 0$$

KKT Conditions

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

 $ec{x}^* \in \mathbb{R}^n$ is a critical point when there exist $ec{\lambda} \in \mathbb{R}^m$ and $\vec{\mu} \in \mathbb{R}^p$ such that:

- $\vec{0} = \nabla f(\vec{x}^*) \sum_i \lambda_i \nabla g_i(\vec{x}^*) \sum_j \mu_j \nabla h_j(\vec{x}^*)$ ("stationarity")
- $g(\vec{x}^*) = \vec{0}$ and $h(\vec{x}) \geq \vec{0}$ ("primal feasibility")
- $\mu_j h_j(\vec{x}^*) = 0$ for all j ("complementary slackness")
- $\mu_i \geq 0$ for all j ("dual feasibility")

Sequential Quadratic Programming (SQP)

$$\vec{x}_{k+1} \equiv \vec{x}_k + \arg\min_{\vec{d}} \left[\frac{1}{2} \vec{d}^{\top} H_f(\vec{x}_k) \vec{d} + \nabla f(\vec{x}_k) \cdot \vec{d} \right]$$
such that $g_i(\vec{x}_k) + \nabla g_i(\vec{x}_k) \cdot \vec{d} = 0$

$$h_i(\vec{x}_k) + \nabla h_i(\vec{x}_k) \cdot \vec{d} \ge 0$$

Equality Constraints Only

$$\begin{pmatrix} H_f(\vec{x}_k) & [Dg(\vec{x}_k)]^\top \\ Dg(\vec{x}_k) & 0 \end{pmatrix} \begin{pmatrix} \vec{d} \\ \vec{\lambda} \end{pmatrix} = \begin{pmatrix} -\nabla f(\vec{x}_k) \\ -g(\vec{x}_k) \end{pmatrix}$$

- ightharpoonup Can approximate H_f
- ► Can limit distance along d

Inequality Constraints

Active set methods:

Keep track of active constraints and enforce as equality, update based on gradient

Barrier Methods: Equality Case

$$f_{\rho}(\vec{x}) \equiv f(\vec{x}) + \rho ||g(\vec{x})||_{2}^{2}$$

Unconstrained optimization, crank up ρ until $q(\vec{x}) \approx \vec{0}$

Caveat: H_{f_a} becomes poorly conditioned

Barrier Methods: Inequality Case

Inverse barrier: $\frac{1}{h_i(\vec{x})}$

Logarithmic barrier: $-\log h_i(\vec{x})$

To Read: Convex Optimization

A ray of hope: Minimizing convex functions with convex constraints

