CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Almost Done!

- **▶ Homework 7:** 12/2 (today!)
 - ▶ Last lecture: 12/4
- ► Homework 8: 12/9 (optional)
 - ► **Section:** 12/6 (final review)
- ► Final exam: 12/12, 12:15pm (Gates B03)

Go to office hours!

Course Reviews

On Axess!

Additional comments: justin.solomon@stanford.edu

Request for Help

CS 205A notes
$$\xrightarrow{your\ help!}$$
 Textbook

- Review text
- Write reference implementations
- Solidify your CS205A knowledge

Initial Value Problems

Find
$$f(t) : \mathbb{R} \to \mathbb{R}^n$$

Satisfying $F[t, f(t), f'(t), f''(t), \dots, f^{(k)}(t)] = 0$
Given $f(0), f'(0), f''(0), \dots, f^{(k-1)}(0)$

Most Famous Example

Newton's second law

Reminders

This Week

Couple relationships between derivatives.

- Pressure gradient determining fluid flow
- ► *Image operators* using *x* and *y* derivatives

This Week

Couple relationships between derivatives.

- Pressure gradient determining fluid flow
- ▶ Image operators using x and y derivatives

Partial Differential Equations (PDE)

Useful Operators

$$f: \mathbb{R}^3 \to \mathbb{R}, \vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$$

Gradient:
$$\nabla f \equiv \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$$

Divergence:
$$\nabla \cdot \vec{v} \equiv \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}$$

Curl:
$$\nabla \times \vec{v} \equiv \left(\frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3}, \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1}, \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}\right)$$

Laplacian:
$$\nabla^2 f \equiv \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2}$$

Gradient Operator Notation

$$\nabla \equiv \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}\right)$$

For
$$f(t;x,y,z)$$
,
$$\nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$
 No $t!$

Incompressible Navier-Stokes

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v}\right) = -\nabla p + \mu \nabla^2 \vec{v} + \vec{f}$$

- $t \in [0, \infty)$: Time
- $\vec{v}(t):\Omega\to\mathbb{R}^3$: Velocity
- $ho(t):\Omega\to\mathbb{R}$: Density
- $p(t):\Omega\to\mathbb{R}$: Pressure
- $ightharpoonup ec{f}(t):\Omega
 ightarrow\mathbb{R}^3$: External forces (e.g. gravity)

Homework 9

Prove or give a counter-example of the following statement:

In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes equations.

- Millennium Prize Problems in Mathematics (\$1,000,000 prize!)

Maxwell's Equations

Gauss's law:
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

Gauss's (other) law:
$$\nabla \cdot \vec{B} = 0$$

Faraday's law:
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Ampère's law:
$$\nabla \times \vec{B} = \mu_0 \left(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Laplace's Equation

minimize
$$\int_{\Omega} \|\nabla f(\vec{x})\|_{2}^{2} d\vec{x}$$
 such that $f(\vec{x}) = g(\vec{x}) \, \forall x \in \partial \Omega$

Laplace's Equation

minimize
$$\int_{\Omega} \|\nabla f(\vec{x})\|_{2}^{2} d\vec{x}$$

such that $f(\vec{x}) = g(\vec{x}) \, \forall x \in \partial \Omega$

$$\implies \nabla^2 f(\vec{x}) \equiv 0$$

Eikonal Equation

Satisfied by distance functions *d*:

$$\|\nabla d\|_2 = 1$$

https://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/shapes_5_geodesic_descriptors/

Harmonic Analysis

To find resonant frequencies of a domain:

http://graphics.stanford.edu/courses/cs468-13-spring/assets/lecture12.pdf

Boundary Value Problems

• Dirichlet conditions: Value of $f(\vec{x})$ on $\partial\Omega$

• Neumann conditions: Derivatives of $f(\vec{x})$ on $\partial\Omega$

Mixed or Robin conditions: Combination

Second-Order Model Equation

$$\sum_{ij} a_{ij} \frac{\partial f}{\partial x_i \partial x_j} + \sum_{i} b_i \frac{\partial f}{\partial x_i} + cf = 0$$

Second-Order Model Equation

$$\sum_{ij} a_{ij} \frac{\partial f}{\partial x_i \partial x_j} + \sum_{i} b_i \frac{\partial f}{\partial x_i} + cf = 0$$

$$(\nabla^{\top} A \nabla + \nabla \cdot \vec{b} + c)f = 0$$

Well-Posed PDE

- Solution exists
- Solution is unique
- Continuous dependence on boundary conditions
 - Hadamard, 1902

Reminders

Classification of Second-Order PDE

$$(\nabla^{\top} A \nabla + \nabla \cdot \vec{b} + c) f = 0$$

- If A is positive or negative definite, system is elliptic.
- ▶ If A is positive or negative semidefinite, the system is parabolic.
- If A has only one eigenvalue of different sign from the rest, the system is *hyperbolic*.
- If A satisfies none of the criteria, the system is ultrahyperbolic.

Elliptic PDE

A is positive (or negative) definite!

- Existence/uniqueness theory
- Elliptic regularity: Solutions are C^{∞} under weak conditions
- Model equation: Laplace equation $f_{xx} + f_{yy} = g$
- Boundary conditions

A is positive (or negative) definite!

- Existence/uniqueness theory
- Elliptic regularity: Solutions are C^{∞} under weak conditions
- Model equation: Laplace equation $f_{xx} + f_{yy} = g$
- Boundary conditions

[1D example]

Parabolic PDE

A is positive semi-definite

- Short-term existence/uniqueness
- ullet Model equation: Heat equation $f_t = lpha
 abla^2 f$
- Boundary conditions: Time and space

Hyperbolic PDE

A is has one eigenvalue of opposite sign

- Model equation: Wave equation $f_{tt} - c^2 \nabla^2 f = 0$
- Not necessarily dampening over time
- Boundary conditions: Time and space (incl. first derivative)

Derivative as Operator on C^{∞}

$$\frac{d}{dx}(af(x) + bg(x))$$

$$= a\frac{d}{dx}f(x) + b\frac{d}{dx}g(x)$$

Recall: Central Differencing

$$f''(x) = \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)] + O(h)$$

Second Derivative Operator

$$n+1$$
 samples on $[0,1]$
$$y_k'' \equiv \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2}$$

Second Derivative Operator

$$n+1$$
 samples on $\left[0,1\right]$

$$y_k'' \equiv \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2}$$

Draw stencil

Boundary Conditions

• Dirichlet: $y_{-1} = y_{n+1} = 0$

▶ Neumann: $y_{-1} = y_0$ and $y_{n+1} = y_n$

▶ Periodic: $y_{-1} = y_n$ and $y_{n+1} = y_0$

Derivative Operator Matrix

$$h^2 \vec{w} = L_1 \vec{y}$$

$$\begin{pmatrix} -2 & 1 & & & & \\ 1 & -2 & 1 & & & & \\ & 1 & -2 & 1 & & & \\ & & \ddots & \ddots & \ddots & & \\ & & 1 & -2 & 1 & & \\ & & & 1 & -2 & \end{pmatrix}$$

Dirichlet

Derivative Operator Matrix

$$h^2 \vec{w} = L_1 \vec{y}$$

$$\begin{pmatrix} -1 & 1 & & & & \\ 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -1 \end{pmatrix}$$

Neumann (null space!)

Derivative Operator Matrix

$$h^2 \vec{w} = L_1 \vec{y}$$

$$\begin{pmatrix} -2 & 1 & & & 1 \\ 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2 \end{pmatrix}$$

Periodic (null space!)

Stencil for 2D Grid

$$(\nabla^2 y)_{k,\ell} \equiv \frac{1}{h^2} (y_{(k-1),\ell} + y_{k,(\ell-1)} + y_{(k+1),\ell} + y_{k,(\ell+1)} - 4y_{k,\ell})$$

What About First Derivative?

- Potential for asymmetry at notes
- Centered differences: Fencepost problem
- Possible resolution: Imitate leapfrog

Almost Done!

- **▶ Homework 7:** 12/2 (today!)
- ► Last lecture: 12/4
- ► Homework 8: 12/9 (optional)
 - ▶ **Section:** 12/6 (final review)
- ► Final exam: 12/12, 12:15pm (Gates B03)

Go to office hours! Do reviews! Help edit notes!

