Sensitivity and Conditioning

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Questions

Gaussian elimination works in theory, but what about floating point precision?

How much can we trust \vec{x}_{0} if

$$
0<\left\|A \vec{x}_{0}-\vec{b}\right\| \ll 1 ?
$$

Recall: Backward Error

Backward Error

The amount a problem statement would have to change to realize a given approximation of its solution

Example 1: \sqrt{x}

Example 2: $A \vec{x}=\vec{b}$

Perturbation Analysis

How does \vec{x} change if we solve

$$
(A+\delta A) \vec{x}=\vec{b}+\delta \vec{b} ?
$$

Two viewpoints:

- Thanks to floating point precision, A and \vec{b} are approximate
- If \vec{x}_{0} isn't the exact solution, what is the backward error?

What is "Small?"

What does it mean for a statement to hold for small $\delta \vec{x}$?

What is "Small?"

What does it mean for a statement to hold for small $\delta \vec{x}$?

Vector norm

A function $\|\cdot\|: \mathbb{R}^{n} \rightarrow[0, \infty)$ satisfying:

1. $\|\vec{x}\|=0$ iff $\vec{x}=0$
2. $\|c \vec{x}\|=|c|\|\vec{x}\| \forall c \in R, \vec{x} \in \mathbb{R}^{n}$
3. $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\| \forall \vec{x}, \vec{y} \in \mathbb{R}^{n}$

Our Favorite Norm

$$
\|\vec{x}\|_{2} \equiv \sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

p-Norms

$$
\begin{gathered}
\text { For } p \geq 1 \\
\|\vec{x}\|_{p} \equiv\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p} \\
\text { Taxicab norm: }\|\vec{x}\|_{1}
\end{gathered}
$$

∞ Norm

$$
\|\vec{x}\|_{\infty} \equiv \max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)
$$

How are Norms Different?

<unit_circles>

How are Norms the Same?

Equivalent norms

Two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are equivalent if there exist constants $c_{\text {low }}$ and $c_{\text {high }}$ such that $c_{\text {low }}\|\vec{x}\| \leq\|\vec{x}\|^{\prime} \leq c_{h i g h}\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$.

How are Norms the Same?

Equivalent norms

Two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are equivalent if there exist constants $c_{\text {low }}$ and $c_{\text {high }}$ such that $c_{\text {low }}\|\vec{x}\| \leq\|\vec{x}\|^{\prime} \leq c_{\text {high }}\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$.

Theorem

All norms on \mathbb{R}^{n} are equivalent.

How are Norms the Same?

Equivalent norms

Two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are equivalent if there exist constants $c_{\text {low }}$ and $c_{\text {high }}$ such that $c_{\text {low }}\|\vec{x}\| \leq\|\vec{x}\|^{\prime} \leq c_{h i g h}\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$.

Theorem

All norms on \mathbb{R}^{n} are equivalent.

$$
(10000,1000,1000) \text { vs. }(10000,0,0) ?
$$

Matrix Norms:

 "Unrolled" Construction$$
A \in \mathbb{R}^{m \times n} \leftrightarrow \mathrm{a}(:) \in \mathbb{R}^{m n}
$$

Matrix Norms:

"Induced" Construction

$$
\|A\| \equiv \max \{\|A \vec{x}\|:\|\vec{x}\|=1\}
$$

Matrix Norms:

"Induced" Construction

$$
\|A\| \equiv \max \{\|A \vec{x}\|:\|\vec{x}\|=1\}
$$

What is the norm induced by $\|\cdot\|_{2}$?

Other Induced Norms

$$
\begin{aligned}
\|A\|_{1} & \equiv \max _{j} \sum_{i}\left|a_{i j}\right| \\
\|A\|_{\infty} & \equiv \max _{i} \sum_{j}\left|a_{i j}\right|
\end{aligned}
$$

Question

Are all matrix norms equivalent?

Recall: Condition Number

Condition number
 Ratio of forward to backward error

Root-finding example:

$$
\frac{1}{f^{\prime}\left(x^{*}\right)}
$$

Model Problem

$$
(A+\varepsilon \cdot \delta A) \vec{x}(\varepsilon)=\vec{b}+\varepsilon \cdot \delta \vec{b}
$$

Simplification (on the board!)

$$
\begin{gathered}
\left.\frac{d \vec{x}}{d \varepsilon}\right|_{\varepsilon=0}=A^{-1}(\delta \vec{b}-\delta A \cdot \vec{x}(0)) \\
\frac{\|\vec{x}(\varepsilon)-\vec{x}(0)\|}{\|\vec{x}(0)\|} \leq|\varepsilon|\left\|A^{-1}\right\|\|A\|\left(\frac{\|\delta \vec{b}\|}{\|\vec{b}\|}+\frac{\|\delta A\|}{\|A\|}\right)+O\left(\varepsilon^{2}\right)
\end{gathered}
$$

Condition Number

Condition number
 The condition number of $A \in \mathbb{R}^{n \times n}$ for a given matrix norm $\|\cdot\|$ is cond $A \equiv \kappa \equiv\left\|A^{-1}\right\|\|A\|$.

Condition Number

Condition number

The condition number of $A \in \mathbb{R}^{n \times n}$ for a given matrix norm $\|\cdot\|$ is cond $A \equiv \kappa \equiv\left\|A^{-1}\right\|\|A\|$.

Relative change: $D \equiv \frac{\delta \vec{b}}{\|\vec{b}\|}+\frac{\|\delta A\|}{\|A\|}$

$$
\frac{\|\vec{x}(\varepsilon)-\vec{x}(0)\|}{\|\vec{x}(0)\|} \leq \varepsilon \cdot D \cdot \kappa+O\left(\varepsilon^{2}\right)
$$

Condition Number

Condition number

 The condition number of $A \in \mathbb{R}^{n \times n}$ for a given matrix norm $\|\cdot\|$ is cond $A \equiv \kappa \equiv\left\|A^{-1}\right\|\|A\|$.Relative change: $D \equiv \frac{\delta \vec{b}}{\|\vec{b}\|}+\frac{\|\delta A\|}{\|A\|}$

$$
\frac{\|\vec{x}(\varepsilon)-\vec{x}(0)\|}{\|\vec{x}(0)\|} \leq \varepsilon \cdot D \cdot \kappa+O\left(\varepsilon^{2}\right)
$$

Invariant to scaling (unlike determinant!); equals one for the identity.

Condition Number of Induced Norm

Chicken \Longleftrightarrow Egg

cond $A \equiv\|A\|\left\|A^{-1}\right\|$

Computing $\left|\left|A^{-1}\right|\right|$ typically requires solving

 $A \vec{x}=\vec{b}$, but how do we know the reliability of \vec{x} ?
To Avoid...

What is the condition number of computing the condition number of A ?

To Avoid...

What is the condition number of computing the condition number of A ?

What is the condition number of computing what the condition number is of computing the condition number of A ?

Instead

Bound the condition number.

- Below: Problem is at least this hard
- Above: Problem is at most this hard

Potential for Approximation

$$
\begin{aligned}
\left\|A^{-1} \vec{x}\right\| & \leq\left\|A^{-1}\right\|\|\vec{x}\| \\
& \Downarrow \\
\operatorname{cond} A=\|A\|\left\|A^{-1}\right\| & \geq \frac{\|A\|\left\|A^{-1} \vec{x}\right\|}{\|\vec{x}\|}
\end{aligned}
$$

