Optimization III: Constrained Optimization

Justin Solomon
Constrained Problems

minimize \(f(\vec{x}) \)

such that
\[
\begin{align*}
g(\vec{x}) &= \vec{0} \\
h(\vec{x}) &\geq \vec{0}
\end{align*}
\]
Really Difficult!

Simultaneously:

- Minimizing f
- Finding roots of g
- Finding feasible points of h
Implicit Projection

Implicit surface: \(g(\vec{x}) = 0 \)
Implicit surface: \(g(\vec{x}) = 0 \)

minimize \(\| \vec{x} - \vec{x}_0 \|_2 \)

such that \(g(\vec{x}) = 0 \)
Nonnegative Least-Squares

\[
\text{minimize}_{\vec{x}} \quad \| A\vec{x} - \vec{b} \|_2^2 \\
\text{such that} \quad \vec{x} \geq \vec{0}
\]
Manufacturing

- \(m \) materials
- \(s_i \) units of material \(i \) in stock
- \(n \) products
- \(p_j \) profit for product \(j \)
- Product \(j \) uses \(c_{ij} \) units of material \(i \)
Manufacturing

\begin{align*}
\text{maximize } & \quad \sum_j p_j x_j \\
\text{such that } & \quad x_j \geq 0 \ \forall j \\
& \quad \sum_j c_{ij} x_j \leq s_i \ \forall i \\
\end{align*}

“Maximize profits where you make a positive amount of each product and use limited material.”
Bundle Adjustment

\[
\min_{\tilde{y}_j, P_i} \sum_{i,j} \left\| P_i \tilde{y}_j - \tilde{x}_{ij} \right\|_2^2
\]

s.t. \(P_i \) orthogonal \(\forall i \)
Feasible point and feasible set

A feasible point is any point \(\vec{x} \) satisfying \(g(\vec{x}) = \vec{0} \) and \(h(\vec{x}) \geq \vec{0} \). The feasible set is the set of all points \(\vec{x} \) satisfying these constraints.
Basic Definitions

Feasible point and feasible set

A feasible point is any point \(\vec{x} \) satisfying \(g(\vec{x}) = \vec{0} \) and \(h(\vec{x}) \geq \vec{0} \). The feasible set is the set of all points \(\vec{x} \) satisfying these constraints.

Critical point of constrained optimization

A critical point is one satisfying the constraints that also is a local maximum, minimum, or saddle point of \(f \) within the feasible set.
Differential Optimality

Without h:

$$\Lambda(\vec{x}, \vec{\lambda}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x})$$

Lagrange Multipliers
Inequality Constraints at \vec{x}^*

Active constraint
- $h(\vec{x}^*) = 0$

Inactive constraint
- $h(\vec{x}^*) > 0$
Inequality Constraints at \mathbf{x}^*

Two cases:

- **Active:** $h_i(\mathbf{x}^*) = 0$
 Optimum might change if constraint is removed

- **Inactive:** $h_i(\mathbf{x}^*) > 0$
 Removing constraint does not change \mathbf{x}^* locally
Idea

Remove inactive constraints and make active constraints equality constraints.
Lagrange Multipliers

\[\Lambda(\vec{x}, \vec{\lambda}, \vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x}) \]

No longer a critical point! But if we ignore that:

\[\vec{0} = \nabla f(\vec{x}) - \sum_i \lambda_i \nabla g_i(\vec{x}) - \sum_j \mu_j \nabla h_j(\vec{x}) \]
Lagrange Multipliers

\[\Lambda(\vec{x}, \vec{\lambda}, \vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x}) \]

No longer a critical point! But if we ignore that:

\[\vec{0} = \nabla f(\vec{x}) - \sum_i \lambda_i \nabla g_i(\vec{x}) - \sum_j \mu_j \nabla h_j(\vec{x}) \]

\[\mu_j h_j(\vec{x}) = \vec{0} \]

Zero out inactive constraints!
So far: Have not distinguished between
\[h_j(\vec{x}) \geq 0 \text{ and } h_j(\vec{x}) \leq 0 \]
Inequality Direction

So far: Have not distinguished between

\[h_j(\vec{x}) \geq 0 \text{ and } h_j(\vec{x}) \leq 0 \]

- Direction to decrease \(f \): \(-\nabla f(\vec{x}^*)\)
- Direction to decrease \(h_j \): \(-\nabla h_j(\vec{x}^*)\)
Inequality Direction

So far: Have not distinguished between

\[h_j(x) \geq 0 \text{ and } h_j(x) \leq 0 \]

- Direction to decrease \(f \): \(-\nabla f(x^*)\)
- Direction to decrease \(h_j \): \(-\nabla h_j(x^*)\)

\[\nabla f(x^*) \cdot \nabla h_j(x^*) \geq 0 \]
Dual Feasibility

\[\mu_j \geq 0 \]
Theorem (Karush-Kuhn-Tucker (KKT) conditions)

\(\mathbf{x}^* \in \mathbb{R}^n \) is a critical point when there exist \(\mathbf{\lambda} \in \mathbb{R}^m \) and \(\mathbf{\mu} \in \mathbb{R}^p \) such that:

- \(\mathbf{0} = \nabla f(\mathbf{x}^*) - \sum_i \lambda_i \nabla g_i(\mathbf{x}^*) - \sum_j \mu_j \nabla h_j(\mathbf{x}^*) \)
 (“stationarity”)

- \(g(\mathbf{x}^*) = \mathbf{0} \) and \(h(\mathbf{x}) \geq \mathbf{0} \)
 (“primal feasibility”)

- \(\mu_j h_j(\mathbf{x}^*) = 0 \) for all \(j \)
 (“complementary slackness”)

- \(\mu_j \geq 0 \) for all \(j \)
 (“dual feasibility”)

KKT Conditions

Theorem (Karush-Kuhn-Tucker (KKT) conditions)
Sequential Quadratic Programming (SQP)

\[\bar{x}_{k+1} \equiv \bar{x}_k + \arg \min_{\bar{d}} \left[\frac{1}{2} \bar{d}^\top H_f(\bar{x}_k) \bar{d} + \nabla f(\bar{x}_k) \cdot \bar{d} \right] \]

such that
\[g_i(\bar{x}_k) + \nabla g_i(\bar{x}_k) \cdot \bar{d} = 0 \]
\[h_i(\bar{x}_k) + \nabla h_i(\bar{x}_k) \cdot \bar{d} \geq 0 \]
Equality Constraints Only

\[
\begin{pmatrix}
H_f(x_k) & [Dg(x_k)]^\top \\
Dg(x_k) & 0
\end{pmatrix}
\begin{pmatrix}
d \\
\lambda
\end{pmatrix}
=
\begin{pmatrix}
-\nabla f(x_k) \\
-g(x_k)
\end{pmatrix}
\]

- Can approximate \(H_f \)
- Can limit distance along \(d \)
Inequality Constraints

Active set methods:
Keep track of active constraints and enforce as equality, update based on gradient
Barrier Methods: Equality Case

\[f_\rho(\vec{x}) \equiv f(\vec{x}) + \rho \| g(\vec{x}) \|_2^2 \]

Unconstrained optimization, crank up \(\rho \) until
\[g(\vec{x}) \approx \vec{0} \]

Caveat: \(H_{f_\rho} \) becomes poorly conditioned
Barrier Methods: Inequality Case

Inverse barrier: \(\frac{1}{h_i(\vec{x})} \)

Logarithmic barrier: \(- \log h_i(\vec{x}) \)
A ray of hope: Minimizing convex functions with convex constraints