Homework 3: QR and Eigenproblems

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2015) Stanford University
Due Tuesday, April 26, 9:00am (beginning of class—changed!)

Textbook problems: 5.1 (20 points), 6.3 (30 points), $6.9(\mathrm{a})(30$ points)
Regularized Least-Squares without $A^{T} A$: (20 points) When solving over-determined $A \vec{x}=\vec{b}$ systems (where A is m-by- n matrix with $m>n$), we have seen how QR can be used to avoid forming the poorly conditioned normal equations' $A^{T} A$ matrix. However, one convenience of the normal equations was that it was easy to apply Tikhonov regularization by adding a constant to the diagonal to get $A^{T} A+\alpha I$. Show that the augmented matrix $B=\left[\begin{array}{c}A \\ \beta I\end{array}\right]$ can be used to form a linear system $B \vec{x}=\vec{c}$, where $\beta \in \mathbb{R}$ and $\vec{c} \in \mathbb{R}^{2 n}$, which has the same mathematical solution to the regularized normal equations, while avoiding the formation of $A^{T} A$. What are β and \vec{c} ?

Extra credit: 5.5 (5 points), 6.5 (5 points)

