Linear Systems and LU

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)

Homework

- **1. Homework 0:** Due Tues (use gradescope)
- 2. Homework 1: Out Tues

Linear Systems

$$A\vec{x} = \vec{b}$$

$$A \in \mathbb{R}^{m \times n}$$

$$\vec{x} \in \mathbb{R}^n$$

$$\vec{b} \in \mathbb{R}^m$$

Case 1: Solvable

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

"Completely Determined"

Case 2: No Solution

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

"Overdetermined"

Case 3: Infinitely Many Solutions

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

"Underdetermined"

No Other Cases

Proposition

If $A\vec{x} = \vec{b}$ has two distinct solutions \vec{x}_0 and \vec{x}_1 , it has infinitely many solutions.

Common Misconception

Solvability can depend on \vec{b} !

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Dependence on Shape

Proposition

Tall matrices admit unsolvable right hand sides.

Proposition

Wide matrices admit right hand sides with infinite numbers of solutions.

For Now

All matrices will be:

- Square
- Invertible

Inverting Matrices

Do *not* compute A^{-1} if you do not need it.

- Not the same as solving $A\vec{x} = \vec{b}$
- Can be slow and poorly conditioned

Example

- Permute rows
- Row scaling
- Forward/back substitution

Row Operations: Permutation

$$\sigma: \{1, \ldots, m\} \to \{1, \ldots, m\}$$

$$P_{\sigma} \equiv \left(egin{array}{ccc} - & \vec{e}_{\sigma(1)}^{\intercal} & - \\ - & \vec{e}_{\sigma(2)}^{\intercal} & - \\ & \cdots & \\ - & \vec{e}_{\sigma(m)}^{\intercal} & - \end{array}
ight)$$

Row Operations: Row Scaling

$$S_a \equiv \begin{pmatrix} a_1 & 0 & 0 & \cdots \\ 0 & a_2 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_m \end{pmatrix}$$

Row Operations: Elimination

"Scale row k by constant c and add result to row ℓ ."

$$E \equiv I + c\vec{e}_{\ell}\vec{e}_{k}^{\top}$$

Solving via Elimination Matrices

Reverse order!

Introducing Gaussian Elimination

Big idea:

General strategy to solve linear systems via row operations.

Elimination Matrix Interpretation

$$A\vec{x} = \vec{b}$$

$$E_1 A \vec{x} = E_1 \vec{b}$$

$$E_2 E_1 A \vec{x} = E_2 E_1 \vec{b}$$

$$\vdots$$

$$E_k \cdots E_2 E_1 A \vec{x} = \underbrace{E_k \cdots E_2 E_1}_{A \cdot 1} \vec{b}$$

Shape of Systems

Pivot

Row Scaling

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{pmatrix}$$

Forward Substitution

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{pmatrix}$$

Forward Substitution

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{pmatrix}$$

Upper Triangular Form

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & 1 & \times
\end{pmatrix}$$

Back Substitution

$$\begin{pmatrix}
1 & \times & \times & 0 & | \times \\
0 & 1 & \times & 0 & | \times \\
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & 1 & | \times
\end{pmatrix}$$

Back Substitution

$$\begin{pmatrix}
1 & \times & 0 & 0 & \times \\
0 & 1 & 0 & 0 & \times \\
0 & 0 & 1 & 0 & \times \\
0 & 0 & 0 & 1 & \times
\end{pmatrix}$$

Back Substitution

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | \times \\
0 & 1 & 0 & 0 & | \times \\
0 & 0 & 1 & 0 & | \times \\
0 & 0 & 0 & 1 & | \times
\end{pmatrix}$$

Steps of Gaussian Elimination

- **1.** Forward substitution: For each row $i = 1, 2, \dots, m$
 - ▶ Scale row to get pivot 1
 - For each j > i, subtract multiple of row i from row j to zero out pivot column
- **2.** Backward substitution: For each row $i=m,m-1,\ldots,1$
 - For each j < i, zero out rest of column

Total Running Time

$$O(n^3)$$

Problem

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Even Worse

$$A = \begin{pmatrix} \varepsilon & 1 \\ 1 & 0 \end{pmatrix}$$

Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- ► *Full* pivoting

$$\left(\begin{array}{ccc}
1 & 10 & -10 \\
0 & 0.1 & 9 \\
0 & 4 & 6.2
\end{array}\right)$$

Reasonable Use Case

$$A\vec{x}_1 = \vec{b}_1$$

$$A\vec{x}_2 = \vec{b}_2$$

$$\vdots$$

Can we restructure A to make this more efficient?

Does each solve take $O(n^3)$ time?

Observation

Steps of Gaussian elimination depend only on structure of A.

Avoid repeating identical arithmetic on A?

Another Clue: Upper Triangular Systems

$$\begin{pmatrix}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & 1 & \times
\end{pmatrix}$$

After Back Substitution

$$\left(\begin{array}{ccc|c}
1 & \times & \times & 0 & \times \\
0 & 1 & \times & 0 & \times \\
0 & 0 & 1 & 0 & \times \\
\hline
0 & 0 & 0 & 1 & \times
\end{array}\right)$$

No need to subtract the 0's explicitly! O(n) time

Next Pivot: Same Observation

$$\left(\begin{array}{ccc|c}
1 & \times & 0 & 0 & \times \\
0 & 1 & 0 & 0 & \times \\
\hline
0 & 0 & 1 & 0 & \times \\
0 & 0 & 0 & 1 & \times
\end{array}\right)$$

Observation

Triangular systems can be solved in $O(n^2)$ time.

Upper Triangular Part of A

$$A\vec{x} = \vec{b}$$

$$M_k \cdots M_1 A \vec{x} = M_k \cdots M_1 \vec{b}$$

Define:

$$U \equiv M_k \cdots M_1 A$$

Lower Triangular Part

$$U = M_k \cdots M_1 A$$

$$\Rightarrow A = (M_1^{-1} \cdots M_k^{-1}) U$$

$$\equiv LU$$

Why Is L Triangular?

$$S \equiv \operatorname{diag}(a_1, a_2, \dots)$$
$$E \equiv I + c\vec{e}_{\ell}\vec{e}_{k}^{\top}$$

Proposition

The product of triangular matrices is triangular.

Solving Systems Using LU

$$A\vec{x} = \vec{b}$$

$$\Rightarrow LU\vec{x} = \vec{b}$$

- **1.** Solve $L\vec{y} = \vec{b}$ using forward substitution.
- **2.** Solve $U\vec{x} = \vec{y}$ using backward substitution.
 - $O(n^2)$ (given LU factorization)

LU: Compact Storage

$$\left(\begin{array}{cccc}
U & U & U & U \\
L & U & U & U \\
L & L & U & U \\
L & L & L & U
\end{array}\right)$$

Assumption: Diagonal elements of L are 1. Warning: Do not multiply this matrix!

Computing LU Factorization

Small modification of forward substitution step to keep track of L.¹

¹See textbook for pseudocode.

Question

Does every A admit a factorization A = LU?

Recall: Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- ► *Full* pivoting

$$\left(\begin{array}{ccc}
1 & 10 & -10 \\
0 & 0.1 & 9 \\
0 & 4 & 6.2
\end{array}\right)$$

Pivoting by Swapping Columns

$$\underbrace{(E_k \cdots E_1)}_{\text{elimination}} \cdot A \cdot \underbrace{(P_1 \cdots P_\ell)}_{\text{permutations}} \cdot \underbrace{(P_\ell^\top \cdots P_1^\top)}_{\text{inv. permutations}} \vec{x}$$

$$= (E_k \cdots E_1)\vec{b}$$

$$\downarrow \\ A = LUP$$

