Linear Systems and LU

CS 205A:
Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)

Homework

1. Homework 0: Due Tues (use gradescope)
 2. Homework 1: Out Tues

Linear Systems

$$
\begin{aligned}
A \vec{x} & =\vec{b} \\
A & \in \mathbb{R}^{m \times n} \\
\vec{x} & \in \mathbb{R}^{n} \\
\vec{b} & \in \mathbb{R}^{m}
\end{aligned}
$$

Case 1: Solvable

$\binom{10}{0}\binom{x}{y}=\binom{-1}{1}$
"Completely Determined"

Case 2: No Solution

Case 3: Infinitely Many Solutions

No Other Cases

Proposition

If $A \vec{x}=\vec{b}$ has two distinct solutions \vec{x}_{0} and \vec{x}_{1}, it has infinitely many solutions.

Common Misconception

Solvability can depend on \vec{b} !

Dependence on Shape

Proposition
 Tall matrices admit unsolvable right hand sides.

Proposition

Wide matrices admit right hand sides with infinite numbers of solutions.

For Now

All matrices will be:

 . Square - Invertible
Inverting Matrices

Do not compute A^{-1} if you do not need it.

- Not the same as solving $A \vec{x}=\vec{b}$
- Can be slow and poorly conditioned

Example

$$
\begin{aligned}
y-z & =-1 \\
3 x-y+z & =4 \\
x+y-2 z & =-3
\end{aligned} \Longleftrightarrow\left(\begin{array}{ccc|c}
0 & 1 & -1 & -1 \\
3 & -1 & 1 & 4 \\
1 & 1 & -2 & -3
\end{array}\right)
$$

- Permute rows
- Row scaling
- Forward/back substitution

Row Operations: Permutation

$$
\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}
$$

Row Operations：Row Scaling

Row Operations: Elimination

"Scale row k by constant c and add result to row ℓ."

$$
E \equiv I+c \vec{e}_{\ell} \vec{e}_{k}^{\top}
$$

Solving via Elimination Matrices

Reverse order!

Introducing Gaussian Elimination

Big idea:
 General strategy to solve linear systems via row operations.

Elimination Matrix Interpretation

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& E_{1} A \vec{x}=E_{1} \vec{b} \\
& E_{2} E_{1} A \vec{x}=E_{2} E_{1} \vec{b} \\
& \vdots \\
& \underbrace{E_{k} \cdots E_{2} E_{1} A}_{I_{n \times n}} \vec{x}=\underbrace{E_{k} \cdots E_{2} E_{1}}_{A^{-1}} \vec{b}
\end{aligned}
$$

Shape of Systems

Pivot

Row Scaling

Forward Substitution

Forward Substitution

Upper Triangular Form

Back Substitution

Back Substitution

Back Substitution

Steps of Gaussian Elimination

1. Forward substitution: For each row $i=1,2, \ldots, m$

- Scale row to get pivot 1
- For each $j>i$, subtract multiple of row
i from row j to zero out pivot column

2. Backward substitution: For each row $i=m, m-1, \ldots, 1$

- For each $j<i$, zero out rest of column

Total Running Time

Problem

Even Worse

Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- Full pivoting

Reasonable Use Case

$$
\begin{aligned}
& A \vec{x}_{1}=\vec{b}_{1} \\
& A \vec{x}_{2}=\vec{b}_{2}
\end{aligned}
$$

Can we restructure A to make this more efficient?

Does each solve take $O\left(n^{3}\right)$ time?

Observation

Steps of Gaussian elimination depend only on structure of A.

Avoid repeating identical arithmetic on A ?

Another Clue: Upper Triangular Systems

$$
\left(\begin{array}{cccc|c}
1 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times \\
0 & 0 & 1 & \times & \times \\
0 & 0 & 0 & 1 & \times
\end{array}\right)
$$

After Back Substitution

$$
\left(\begin{array}{cccc|c}
1 & \times & \times & 0 & \times \\
0 & 1 & \times & 0 & \times \\
0 & 0 & 1 & 0 & \times \\
0 & 0 & 0 & 1 & \times
\end{array}\right)
$$

No need to subtract the 0's explicitly!
$O(n)$ time

Next Pivot: Same Observation

$$
\left(\begin{array}{cccc|c}
1 & \times & 0 & 0 & \times \\
0 & 1 & 0 & 0 & \times \\
0 & 0 & 1 & 0 & \times \\
0 & 0 & 0 & 1 & \times
\end{array}\right)
$$

Observation
 Triangular systems can be solved in $O\left(n^{2}\right)$ time.

Upper Triangular Part of A

$$
\begin{gathered}
A \vec{x}=\vec{b} \\
\vdots \\
M_{k} \cdots M_{1} A \vec{x}=M_{k} \cdots M_{1} \vec{b}
\end{gathered}
$$

Define:

$$
U \equiv M_{k} \cdots M_{1} A
$$

Lower Triangular Part

$$
\begin{aligned}
U & =M_{k} \cdots M_{1} A \\
\Rightarrow A & =\left(M_{1}^{-1} \cdots M_{k}^{-1}\right) U \\
& \equiv L U
\end{aligned}
$$

Why Is L Triangular?

$$
\begin{gathered}
S \equiv \operatorname{diag}\left(a_{1}, a_{2}, \ldots\right) \\
E \equiv I+c \vec{e}_{\ell} \vec{e}_{k}^{\top}
\end{gathered}
$$

Proposition

The product of triangular matrices is triangular.

Solving Systems Using LU

$$
\begin{aligned}
A \vec{x} & =\vec{b} \\
\Rightarrow L U \vec{x} & =\vec{b}
\end{aligned}
$$

1. Solve $L \vec{y}=\vec{b}$ using forward substitution.
2. Solve $U \vec{x}=\vec{y}$ using backward substitution.
$O\left(n^{2}\right)$ (given LU factorization)

LU: Compact Storage

$$
\left(\begin{array}{cccc}
U & U & U & U \\
L & U & U & U \\
L & L & U & U \\
L & L & L & U
\end{array}\right)
$$

Assumption: Diagonal elements of L are 1 .
Warning: Do not multiply this matrix!

Computing LU Factorization

Small modification of

forward substitution step to

keep track of $L .{ }^{1}$

${ }^{1}$ See textbook for pseudocode.

Question

Does every A admit a factorization $A=L U$?

Recall: Pivoting

Pivoting

Permuting rows and/or columns to avoid dividing by small numbers or zero.

- Partial pivoting
- Full pivoting

Pivoting by Swapping Columns

$$
\begin{aligned}
& =\left(E_{k} \cdots E_{1}\right) \vec{b} \\
& \Downarrow \\
& A=L U P
\end{aligned}
$$

