Optimization II: Unconstrained Multivariable

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Unconstrained Multivariable Problems

minimize

$$f: \mathbb{R}^n \to \mathbb{R}$$

Recall

$$\nabla f(\vec{x})$$

"Direction of steepest ascent"

Recall

$$-\nabla f(\vec{x})$$

"Direction of steepest descent"

Observation

If
$$\nabla f(\vec{x}) \neq \vec{0}$$
, for sufficiently small $\alpha > 0$,

$$f(\vec{x} - \alpha \nabla f(\vec{x})) \le f(\vec{x})$$

Gradient Descent Algorithm

Iterate until convergence:

- **1.** $g_k(t) \equiv f(\vec{x}_k t\nabla f(\vec{x}_k))$
- 2. Find $t^* \ge 0$ minimizing (or decreasing) g_k
- 3. $\vec{x}_{k+1} \equiv \vec{x}_k t^* \nabla f(\vec{x}_k)$

Stopping Condition

$$\nabla f(\vec{x}_k) \approx \vec{0}$$

Don't forget: Check optimality!

Line Search

$$g_k(t) \equiv f(\vec{x}_k - t\nabla f(\vec{x}_k))$$

- One-dimensional optimization
- Don't have to minimize completely:Wolfe conditions
 - Constant t: "Learning rate"

Line Search

$$g_k(t) \equiv f(\vec{x}_k - t\nabla f(\vec{x}_k))$$

- One-dimensional optimization
- Don't have to minimize completely:Wolfe conditions
 - Constant t: "Learning rate"

Worth reading about:

Nesterov's Accelerated Gradient Descent

Newton's Method (again!)

$$f(\vec{x}) \approx f(\vec{x}_k) + \nabla f(\vec{x}_k)^{\top} (\vec{x} - \vec{x}_k) + \frac{1}{2} (\vec{x} - \vec{x}_k)^{\top} H_f(\vec{x}_k) (\vec{x} - \vec{x}_k)$$

Newton's Method (again!)

$$f(\vec{x}) \approx f(\vec{x}_k) + \nabla f(\vec{x}_k)^{\top} (\vec{x} - \vec{x}_k)$$
$$+ \frac{1}{2} (\vec{x} - \vec{x}_k)^{\top} H_f(\vec{x}_k) (\vec{x} - \vec{x}_k)$$

$$\Rightarrow \vec{x}_{k+1} = \vec{x}_k - [H_f(\vec{x}_k)]^{-1} \nabla f(\vec{x}_k)$$

Newton's Method (again!)

$$f(\vec{x}) \approx f(\vec{x}_k) + \nabla f(\vec{x}_k)^{\top} (\vec{x} - \vec{x}_k)$$
$$+ \frac{1}{2} (\vec{x} - \vec{x}_k)^{\top} H_f(\vec{x}_k) (\vec{x} - \vec{x}_k)$$

$$\implies \vec{x}_{k+1} = \vec{x}_k - [H_f(\vec{x}_k)]^{-1} \nabla f(\vec{x}_k)$$

Consideration:

What if H_f is not positive (semi-)definite?

Motivation

 ${f \nabla} f$ might be hard to compute but H_f is harder

ullet H_f might be dense: n^2

Quasi-Newton Methods

Approximate derivatives to avoid expensive calculations

e.g. secant, Broyden, ...

Common Optimization Assumption

 ∇f known

ullet H_f unknown or hard to compute

Quasi-Newton Optimization

$$\vec{x}_{k+1} = \vec{x}_k - \alpha_k B_k^{-1} \nabla f(\vec{x}_k)$$
$$B_k \approx H_f(\vec{x}_k)$$

Warning

<advanced_material>

See Nocedal & Wright

Broyden-Style Update

$$B_{k+1}(\vec{x}_{k+1} - \vec{x}_k) = \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k)$$

Additional Considerations

- ullet B_k should be symmetric
- B_k should be positive (semi-)definite

Davidon-Fletcher-Powell (DFP)

$$\min_{B_{k+1}} \|B_{k+1} - B_k\|$$
s.t. $B_{k+1}^{\top} = B_{k+1}$

$$B_{k+1}(\vec{x}_{k+1} - \vec{x}_k) = \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k)$$

Observation

 $\|B_{k+1}-B_k\|$ small does not mean $\|B_{k+1}^{-1}-B_k^{-1}\|$ is small

Observation

 $\|B_{k+1}-B_k\|$ small does not mean $\|B_{k+1}^{-1}-B_k^{-1}\|$ is small

Idea: Try to approximate B_k^{-1} directly

BFGS Update

$$\min_{HB_{k+1}} \|H_{k+1} - H_k\|$$
s.t. $H_{k+1}^{\top} = H_{k+1}$

$$\vec{x}_{k+1} - \vec{x}_k = H_{k+1}(\nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k))$$

State of the art!

Lots of Missing Details

▶ Choice of $\|\cdot\|$

Limited-memory alternative

