Optimization III: Constrained Optimization

CS 205A:
Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)
Constrained Problems

\[
\text{minimize } \quad f(\vec{x})
\]
\[
\text{such that } \quad g(\vec{x}) = \vec{0}
\]
\[
\quad h(\vec{x}) \geq \vec{0}
\]
Really Difficult!

Simultaneously:
- Minimizing f
- Finding roots of g
- Finding feasible points of h
Implicit surface: $g(\vec{x}) = 0$
Implicit surface: \(g(\vec{x}) = 0 \)

Example: Closest point on surface

\[
\begin{align*}
\text{minimize } & \quad \| \vec{x} - \vec{x}_0 \|_2 \\
\text{such that } & \quad g(\vec{x}) = 0
\end{align*}
\]
Nonnegative Least-Squares

\[
\minimize_{\vec{x}} \| A\vec{x} - \vec{b} \|_2^2
\]
\[
such \text{ that } \vec{x} \geq \vec{0}
\]
Manufacturing

- m materials
- s_i units of material i in stock
- n products
- p_j profit for product j
- Product j uses c_{ij} units of material i
Manufacturing

$$\text{maximize}_{\vec{x}} \sum_j p_j x_j$$

such that
$$x_j \geq 0 \ \forall j$$
$$\sum_j c_{ij} x_j \leq s_i \ \forall i$$

“Maximize profits where you make a positive amount of each product and use limited material.”
Bundle Adjustment

\[\min_{\vec{y}_j, P_i} \sum_{ij} \| P_i \vec{y}_j - \vec{x}_{ij} \|^2_2 \]

s.t. \(P_i \) orthogonal \(\forall i \)
Basic Definitions

Feasible point and feasible set

A \textit{feasible point} is any point \vec{x} satisfying $g(\vec{x}) = \vec{0}$ and $h(\vec{x}) \geq \vec{0}$. The \textit{feasible set} is the set of all points \vec{x} satisfying these constraints.
Feasible point and feasible set

A feasible point is any point \vec{x} satisfying $g(\vec{x}) = \vec{0}$ and $h(\vec{x}) \geq \vec{0}$. The feasible set is the set of all points \vec{x} satisfying these constraints.

Critical point of constrained optimization

A critical point is one satisfying the constraints that also is a local maximum, minimum, or saddle point of f within the feasible set.
Differential Optimality

Without h:

$$\Lambda(\vec{x}, \vec{\lambda}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x})$$

Lagrange Multipliers
Inequality Constraints at \vec{x}^*

Active constraint
$h(\vec{x}^*) = 0$

Inactive constraint
$h(\vec{x}^*) > 0$
Inequality Constraints at \vec{x}^*

Two cases:

- **Active**: $h_i(\vec{x}^*) = 0$
 Optimum might change if constraint is removed

- **Inactive**: $h_i(\vec{x}^*) > 0$
 Removing constraint does not change \vec{x}^* locally
Idea

Remove inactive constraints and make active constraints equality constraints.
Lagrange Multipliers

\[\Lambda(\vec{x}, \vec{\lambda}, \vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x}) \]

No longer a critical point! But if we ignore that:

\[0 = \nabla f(\vec{x}) - \sum_i \lambda_i \nabla g_i(\vec{x}) - \sum_j \mu_j \nabla h_j(\vec{x}) \]
Lagrange Multipliers

\[\Lambda(\vec{x}, \vec{\lambda}, \vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x}) \]

No longer a critical point! But if we ignore that:

\[\vec{0} = \nabla f(\vec{x}) - \sum_i \lambda_i \nabla g_i(\vec{x}) - \sum_j \mu_j \nabla h_j(\vec{x}) \]

\[\mu_j h_j(\vec{x}) = 0 \]

Zero out inactive constraints!
Inequality Direction

So far: Have not distinguished between

\[h_j(\vec{x}) \geq 0 \text{ and } h_j(\vec{x}) \leq 0 \]
Inequality Direction

So far: Have not distinguished between

\[h_j(\vec{x}) \geq 0 \text{ and } h_j(\vec{x}) \leq 0 \]

- Direction to decrease \(f \): \(-\nabla f(\vec{x}^*)\)
- Direction to decrease \(h_j \): \(-\nabla h_j(\vec{x}^*)\)
Inequality Direction

So far: Have not distinguished between

\[h_j(\vec{x}) \geq 0 \quad \text{and} \quad h_j(\vec{x}) \leq 0 \]

- Direction to decrease \(f \): \(-\nabla f(\vec{x}^*)\)
- Direction to decrease \(h_j \): \(-\nabla h_j(\vec{x}^*)\)

\[\nabla f(\vec{x}^*) \cdot \nabla h_j(\vec{x}^*) \geq 0 \]
Dual Feasibility

\[\mu_j \geq 0 \]
Theorem (Karush-Kuhn-Tucker (KKT) conditions)

\(\mathbf{x}^* \in \mathbb{R}^n \) is a critical point when there exist \(\mathbf{\lambda} \in \mathbb{R}^m \) and \(\mathbf{\mu} \in \mathbb{R}^p \) such that:

1. \(\nabla \mathbf{0} = \nabla f(\mathbf{x}^*) - \sum_i \lambda_i \nabla g_i(\mathbf{x}^*) - \sum_j \mu_j \nabla h_j(\mathbf{x}^*) \) ("stationarity")
2. \(g(\mathbf{x}^*) = \mathbf{0} \) and \(h(\mathbf{x}) \geq \mathbf{0} \) ("primal feasibility")
3. \(\mu_j h_j(\mathbf{x}^*) = 0 \) for all \(j \) ("complementary slackness")
4. \(\mu_j \geq 0 \) for all \(j \) ("dual feasibility")
Sequential Quadratic Programming (SQP)

\[
\vec{x}_{k+1} \equiv \vec{x}_k + \arg \min_{\vec{d}} \left[\frac{1}{2} \vec{d}^\top H_f(\vec{x}_k) \vec{d} + \nabla f(\vec{x}_k) \cdot \vec{d} \right]
\]

such that

\[
\begin{align*}
g_i(\vec{x}_k) + \nabla g_i(\vec{x}_k) \cdot \vec{d} &= 0 \\
h_i(\vec{x}_k) + \nabla h_i(\vec{x}_k) \cdot \vec{d} &\geq 0
\end{align*}
\]
Equality Constraints Only

\[
\begin{pmatrix}
H_f(\vec{x}_k) & [Dg(\vec{x}_k)]^\top \\
Dg(\vec{x}_k) & 0 \\
\end{pmatrix}
\begin{pmatrix}
\vec{d} \\
\vec{\lambda} \\
\end{pmatrix}
=
\begin{pmatrix}
-\nabla f(\vec{x}_k) \\
-g(\vec{x}_k) \\
\end{pmatrix}
\]

- Can approximate H_f
- Can limit distance along \vec{d}
Inequality Constraints

Active set methods:
Keep track of active constraints and enforce as equality, update based on gradient
Barrier Methods: Equality Case

\[f_\rho(\vec{x}) \equiv f(\vec{x}) + \rho \|g(\vec{x})\|^2 \]

Unconstrained optimization, crank up \(\rho \) until
\[g(\vec{x}) \approx 0 \]

Caveat: \(H_{f_\rho} \) becomes poorly conditioned
Barrier Methods: Inequality Case

Inverse barrier: \[\frac{1}{h_i(\vec{x})} \]

Logarithmic barrier: \[-\log h_i(\vec{x}) \]
A ray of hope: Minimizing convex functions with convex constraints