Homework 5: Root-Finding

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2017) Stanford University
Due Friday, May 19, 11:59pm

Textbook problems: 8.1 (5 points), 8.3 (10 points), 8.4 (10 points), 8.5 (5 points), 8.9 (20 points), 8.10 (10 points)

Julia Programming Question: (40 points) Implement the method from problem 8.10, which can automatically find the separated roots of a polynomial. Use it to estimate all roots of

$$
p(x)=x^{6}-\frac{223 x^{5}}{140}+\frac{319 x^{4}}{315}-\frac{37 x^{3}}{112}+\frac{59 x^{2}}{1008}-\frac{3 x}{560}+\frac{1}{5040}
$$

on the interval $x \in[0,1]$. You may use any automated sub-method for individual root finding (bisection, secant, Newton, etc.) provided that you implement it yourself. Correctness is important, but speed is not a concern. Determine the following:

1. How many unique roots are there?
2. What are the root x-values to at least 10 digits of accuracy?
3. Are all of them "simple roots?" Why?

Note that you may plot/visualize the results to understand the function and confirm your results, but that may not be the basis of your automated root-finding method.
(Hint: You can find derivatives of all orders of a polynomial easily by exploiting a simple coefficient rule:

$$
p(x)=\sum_{k=0}^{n} c_{k} x^{k} \Longrightarrow p^{\prime}(x)=\sum_{k=0}^{n-1} c_{k}^{\prime} x^{k}
$$

where $c_{k}^{\prime}=(k+1) c_{k+1}$.)
Bonus: (5 points) What happens when you try your Julia method on the following polynomial?

$$
p(x)=x^{6}-\frac{33 x^{5}}{20}+\frac{493 x^{4}}{450}-\frac{271 x^{3}}{720}+\frac{17 x^{2}}{240}-\frac{x}{144}+\frac{1}{3600}
$$

What is the problem here?

