Midterm Examination

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016),
Stanford University

o The exam runs for 75 minutes.

e The exam contains six problems. You must complete the first problem and four of problems 2-6.
CIRCLE THE PROBLEMS YOU WANT GRADED ON THE CHART BELOW; OTHERWISE WE WILL GRADE
THE FIRST FOUR QUESTIONS ON WHICH YOU HAVE PROVIDED ANY WRITTEN ANSWER.

e The exam is closed book/notes. You may use one double-sided 81/2” x 11" sheet of notes. No calcu-
lators may be used.

e Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem and indicate that you have done so.

e Do not spend too much time on any problem. Read them all before beginning.
e Show your work, as partial credit will be awarded.

Circle the four additional problems you want graded.
Problem L | 2 3 4 5 6 | Total

Score (/10 each)

The Stanford Honor Code
1. The Honor Code is an undertaking of the students, individually and collectively:

(a) that they will not give or receive aid in examinations; that they will not give or receive
unpermitted aid in class work, in the preparation of reports, or in any other work that is to
be used by the instructor as the basis of grading;

(b) that they will do their share and take an active part in seeing to it that others as well as
themselves uphold the spirit and letter of the Honor Code.

2. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring
examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty
mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create temp-
tations to violate the Honor Code.

3. While the faculty alone has the right and obligation to set academic requirements, the students and
faculty will work together to establish optimal conditions for honorable academic work.
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YOU MUST COMPLETE THIS PROBLEM.

Problem 1 (True or False). [1 point each]
(1) A matrix with non-unique eigenvalues is defective.

(2) Given a symmetric matrix A € R™" with eigenvalue decomposition A = XDX', then its
singular value decomposition is A = XDX ' too.

(3) If two matrices A and B commute, so that AB = BA, then analytic matrix functions of A and
B also commute, f(A)f(B) = f(B)f(A). (You can assume that a convergent Taylor series of f
exists everywhere.)

(4) The eigenvalues of an orthogonal matrix Q € R"*" are all 1.

(5) The eigenvalues of a Householder reflection matrix H € R"*" are either 1 or -1.

(6) (Heath Rev 3.3) An over-determined linear least-squares problem AX = b always has a unique
solution ¥ that minimizes the Euclidean norm of the residual vector 7 = b — AX.

(7) (Heath Rev 3.8) If Q € R"*" is a Householder transformation matrix, and ¥ € IR" is an arbi-
trary vector, then the last k components of the vector QX can be made zero for some 0 < k < n.

(8) cond(cA) = |c|cond(A).

(9) The float-pointing machine epsilon, €, (the smallest positive number such that 1+ €, = 1
in floating-point arithmetic) is approximately €0, = [3. % (4./3. —1.) — 1.

(10) (Heath Rev 2.14) If a linear system is well-conditioned, then pivoting is unnecessary in Gaus-
sian elimination.



CIRCLE WHICH FOUR OF PROBLEMS 2-6 YOU WANT GRADED ON PAGE 1.
Problem 2 (Short Answers).

(a) Consider the harmonic-series partial sum,
i 1
Sy = —, n=123,...,
m=1 m

which is evaluated using a simple for loop (with increasing m), in a floating-point implementa-
tion with machine epsilon ¢,,,.;,. How large does 1 need to be taken before S,, stops increasing?
What is the largest value that S,, will achieve? [5 points]

(b) (Like Heath 3.23) Given a matrix A € R™*" with linearly independent columns, show that
A(ATA)71AT is an orthogonal projection onto the column space of A. (Hint: Use the SVD
A = UXV'T if you are stuck, but there’s a shorter way.) [5 points]



CIRCLE WHICH FOUR OF PROBLEMS 2-6 YOU WANT GRADED ON PAGE 1.

Problem 3 (Matrix Factorizations).

(a)

(b)

()

Computing the determinant det(A) of a general square matrix A € R"*" involves O(n!) op-
erations using the naive approach, which is prohibitive for large matrices. Alternately, show
how to compute det(A) much more efficiently by using an LU factorization of A with partial
row pivoting, i.e., PA = LU. (Hint: Use det(AB) = det(A) det(B).) [5 points]

Different factorizations have different memory costs. Consider the factorizations
Thin SVD Partial-pivoted LU QR

for a general non-symmetric square matrix A € R"*" (assuming they exist). Arrange them from
left-to-right in increasing order of memory cost (# numbers stored) and state whether they are
roughly equal (=) or less than (<), i.e,, “X <Y =~ Z.” (Note: Only consider the number of
values which are nonzero and need to be stored, e.g., square dense matrices have n? entries,
triangular have (1% + 1) /2 entries (fewer if unit diagonal), diagonal matrices have 7 entries,
etc.) [2 points]

Next, consider the case of symmetric matrices, and rank the memory costs of storing the fol-
lowing decompositions

Eigenvalue Decomp. LLT LDLT QR
(assume that the transpose of an already stored matrix is “free”). [3 points]



CIRCLE WHICH FOUR OF PROBLEMS 2-6 YOU WANT GRADED ON PAGE 1.

Problem 4 (Matrix two-norms).

Given a matrix A € R"*", show that appending an additional column 7 to form the matrix A" =
[A @] € R™("+1) can only increase the matrix’s two-norm, i.e., show that ||A’|| > ||Al|,. (Hint:
The two norm is the largest singular value, which is related to the largest eigenvalue of a particular
symmetric matrix.) [10 points]



CIRCLE WHICH FOUR OF PROBLEMS 2-6 YOU WANT GRADED ON PAGE 1.

11

¢ 0|, where
0 ¢

€ < /€mach, and €y, is the machine precision of your floating-point number system. In this

question you will compare the behavior of the normal equations and QR for solving a least-squares
problem A% = b.

Problem 5 (QR and Least squares). (From Heath 3.23) Consider the matrix A =

(a) Normal equations: Show that the matrix AT A is singular in floating-point arithmetic.
(Hint: You can say that 1 + &? &~ 1 to simplify your floating point expressions.) [2 points]

(b) Compute the QR factorization and show that it is numerically nonsingular. Do so by applying
two Householder reflections to A to obtain an upper triangular but non-square matrix, R =
<%1 ) € R3*2 where Ry € R?*? is the square upper triangular block of R corresponding to the

reduced QR factorization A = Q;R;. Show that R; is nonsingular in floating-point arithmetic.
(Note: You do not need to construct Q or Q;.) [8 points]



CIRCLE WHICH FOUR OF PROBLEMS 2-6 YOU WANT GRADED ON PAGE 1.

Problem 6 (Thin SVD and Eigenvalue Problems). In this problem you will calculate the Thin SVD,
A = ULV, for the 3-by-2 matrix

11
A= |0 1],
10

in three stages:

(a) Using their definition, compute the two singular values (o7 and 03) of A by computing the
eigenvalues of a related 2-by-2 eigenvalue problem. [4 points]



(b) Compute the two right singular vectors 9; € R?, such that V = [, 6,] € R**2. [3 points]
p g g P

(c) Compute the two left singular vectors i; using their relation to 9;, and then normalizing them
to get 11;, such that U = [ 12] € R3*2. [3 points]



