
Homework 7: Multivariate Optimization
CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Winter 2018)

Stanford University
Due Thursday, Mar 8, before 11:59 PM (via gradescope)

Textbook problems:

1. 9.1 (10 points). Convexity of ||Ax− b||

2. 9.12 (20 points). BFGS Symmetric Rank 1 Update

3. 10.12 (25 points). Modified Gradient Descent.

Julia Programming Assignment 45 points):
In this problem you will use Gradient Descent and Newton’s method to minimize two functions:

A The Rosenbrock function
R(x, y) = (a− x)2 + b(y− x2)2

For our problem, a = 1, b = 100. Our initial condition for this problem is x = 0, y = 0.

B The potential energy of a system of 1-dimensional springs with n degrees of freedom and
fixed endpoints.

PEsprings =
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1
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kn(|xR − xn| − dn)
2

The ith spring is connected between xi and xi+1, has a rest length of di, and ki is its spring
constant. For this problem, di = 1∀i, and n = 10. xL is a fixed anchor point on the left side of
the springs that x1 is connected to. xR is a fixed anchor point on the right side that connects
to xn. There are n + 1 springs, and n degrees of freedom. Spring constants alternate between
1 and 0.5 as seen in the starter code. Note: We require that xi+1 ≥ xi∀i and xL < x1 and
xn < xR

In this problem you will implement Gradient Descent and Newton’s Method. The Gradient De-
scent line search should be implemented using the 1D Newton’s method found in Section 9.3 of
the textbook. Your methods may be correct but fail on certain problems. If a method fails (for
instance, the line search cannot find a t > 0), then exit the function and report the current estimate
of the optimum x∗. For all algorithms you implement, let your maximum number of iterations by
10000 and the epsilon you use to be 1e− 8.
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1. Run both methods on the Rosenbrock function. Report the minima that each method arrives
at. Report the number of iterations required by both methods, or the largest number of steps
required until failure.

2. Run both methods to optimize PEsprings when xL = 0 and xR = 11. Report the minima
that each method arrives at. Report the number of iterations required by both methods,
or the largest number of steps required until failure. In this part, the initial condition is
x0 = linspace(1, xR − 1, n) ∗ 0.9

3. Run both methods to optimize PEsprings when xL = 0 and xR = 5. In this part, the initial
condition is x0 = linspace(1, xR − 1, n)

(a) Report the minima that each method arrives at. Report the number of iterations re-
quired by both methods, or the largest number of steps required until failure. Do both
methods produce a physical optimum where xi < xi+1∀i?

(b) What is the smallest integer value of xR such that Newton’s method provides a valid
optimum? Start with xR = 10 and decrement by 1 until you find the breaking point.
Initial Condition: x0 = linspace(1, xR − 1, n) (recompute for each new xR value).

(c) What is the smallest integer value of xR such that gradient descent provides a valid
optimum? Start with xR = 10 and decrement by 1 until you find the breaking point.
Initial Condition: x0 = linspace(1, xR − 1, n) (recompute for each new xR value).

Compression Test:

4. In this part, you will use the solution of a larger interval as an initial condition on a smaller
interval. Specifically, run Newton’s method on PEsprings starting at xR = 11 as in part 1. Use
this optimization result with the previous value of xR as the initial condition for the next step.
Update the right wall xnext

R = xprev
R − 0.1. Solve for the optimum over this new interval using

Newton’s method, and repeat this procedure. Using this iterative compression technique,
what is the smallest value of that xR still produces a valid optimum?

Use the provided starter code for implementations of the Rosenbrock and Spring Energy func-
tions, as well as inital conditions and key parameters.
To simplify submission to GradeScope with your other written homework, export a PDF of a
clearly documented Julia Notebook that shows your work.
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