Column Spaces and QR

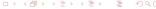
CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

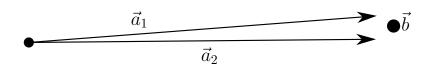
Doug James (and Justin Solomon)

Problem

$$\operatorname{cond} A^{\top} A \approx (\operatorname{cond} A)^2$$



Geometric Intuition



Least-squares fit is ambiguous!

When Is cond $A^{\top}A \approx 1$?

$$\boxed{\operatorname{cond} I_{n \times n} = 1}_{\text{(w.r.t. } \|\cdot\|_2)}$$

When Is cond $A^{\top}A \approx 1$?

$$\underbrace{\operatorname{cond} I_{n \times n} = 1}_{\text{(w.r.t. } \|\cdot\|_2)}$$

Desirable:
$$A^{\top}A \approx I_{n \times n}$$
(then, cond $A^{\top}A \approx 1!$)

When Is cond $A^{\top}A \approx 1$?

$$\boxed{\operatorname{cond} I_{n \times n} = 1}_{\text{(w.r.t. } \|\cdot\|_2)}$$

Desirable: $A^{\top}A \approx I_{n \times n}$ (then, $\operatorname{cond} A^{\top}A \approx 1!$)

Doesn't mean $A = I_{n \times n}$.

Recall: Definition of Gram matrix

$$Q^{\top}Q = \begin{pmatrix} - & \vec{q}_{1}^{\top} & - \\ - & \vec{q}_{2}^{\top} & - \\ \vdots & - & \vec{q}_{n}^{\top} \end{pmatrix} \begin{pmatrix} | & | & | \\ \vec{q}_{1} & \vec{q}_{2} & \cdots & \vec{q}_{n} \\ | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} \vec{q}_{1} \cdot \vec{q}_{1} & \vec{q}_{1} \cdot \vec{q}_{2} & \cdots & \vec{q}_{1} \cdot \vec{q}_{n} \\ \vec{q}_{2} \cdot \vec{q}_{1} & \vec{q}_{2} \cdot \vec{q}_{2} & \cdots & \vec{q}_{2} \cdot \vec{q}_{n} \\ \vdots & \vdots & \cdots & \vdots \\ \vec{q}_{n} \cdot \vec{q}_{1} & \vec{q}_{n} \cdot \vec{q}_{2} & \cdots & \vec{q}_{n} \cdot \vec{q}_{n} \end{pmatrix}$$

When $Q^{\top}Q = I_{n \times n}$

$$\vec{q}_i \cdot \vec{q}_j = \begin{cases} 1 & \text{when } i = j \\ 0 & \text{when } i \neq j \end{cases}$$

When
$$Q^{\top}Q = I_{n \times n}$$

$$\vec{q_i} \cdot \vec{q_j} = \begin{cases} 1 & \text{when } i = j \\ 0 & \text{when } i \neq j \end{cases}$$

Orthonormal; orthogonal matrix

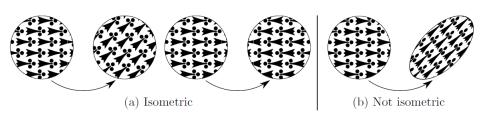
A set of vectors $\{\vec{v}_1, \cdots, \vec{v}_k\}$ is *orthonormal* if $\|\vec{v}_i\| = 1$ for all i and $\vec{v}_i \cdot \vec{v}_j = 0$ for all $i \neq j$. A square matrix whose columns are orthonormal is called an *orthogonal* matrix.

Isometry Properties

$$||Q\vec{x}||^2 = ?$$

$$(Q\vec{x}) \cdot (Q\vec{y}) = ?$$

Geometric Interpretation



Alternative Intuition for Least-Squares

$$A^{\top}A\vec{x} = A^{\top}b \leftrightarrow \min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2$$

Project \vec{b} onto the column space of A.

Observation

Lemma: Column space invariance

For any $A \in \mathbb{R}^{m \times n}$ and invertible $B \in \mathbb{R}^{n \times n}$,

$$\operatorname{col} A = \operatorname{col} AB$$
.

Observation

Lemma: Column space invariance

For any $A \in \mathbb{R}^{m \times n}$ and invertible $B \in \mathbb{R}^{n \times n}$,

$$\operatorname{col} A = \operatorname{col} AB$$
.

Invertible *column* operations do not affect column space.

New Strategy

Apply column operations to A until it is orthogonal; then, solve least-squares on the resulting orthogonal Q.

New Factorization

$$A = QR$$

- ightharpoonup Q orthogonal
- ► R upper triangular

Using QR

$$A^{\top}A\vec{x} = A^{\top}\vec{b}, \quad A = QR$$
$$\rightarrow \vec{x} = R^{-1}Q^{\top}\vec{b}$$

Using QR

$$A^{\top}A\vec{x} = A^{\top}\vec{b}, \quad A = QR$$

$$\rightarrow \vec{x} = R^{-1}Q^{\top}\vec{b}$$

Didn't need to compute $A^{\top}A$ or $(A^{\top}A)^{-1}!$

Vector Projection

"Which multiple of \vec{a} is closest to \vec{b} ?" $\min_c \|c\vec{a} - \vec{b}\|_2^2$

Vector Projection

"Which multiple of \vec{a} is closest to \vec{b} ?"

$$\min_c \|c\vec{a} - \vec{b}\|_2^2$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|_2^2}$$

Vector Projection

"Which multiple of \vec{a} is closest to \vec{b} ?" $\min_c \|c\vec{a} - \vec{b}\|_2^2$

$$c = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|_2^2}$$

$$\operatorname{proj}_{\vec{a}} \vec{b} = c\vec{a} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|_2^2} \vec{a}$$

Properties of Projection

$$\operatorname{proj}_{\vec{a}} \vec{b} \parallel \vec{a}$$

$$\vec{a} \cdot (\vec{b} - \operatorname{proj}_{\vec{a}} \vec{b}) = 0$$

$$\implies (\vec{b} - \operatorname{proj}_{\vec{a}} \vec{b}) \perp \vec{a}$$

Suppose $\hat{a}_1, \dots, \hat{a}_k$ are orthonormal.

$$\operatorname{proj}_{\hat{a}_i} \vec{b} = (\hat{a}_i \cdot \vec{b}) \hat{a}_i$$

$$||c_1\hat{a}_1 + c_2\hat{a}_2 + \dots + c_k\hat{a}_k - \vec{b}||_2^2 = \sum_{i=1}^k \left(c_i^2 - 2c_i\vec{b}\cdot\hat{a}_i\right) + ||\vec{b}||_2^2$$

$$||c_1\hat{a}_1 + c_2\hat{a}_2 + \dots + c_k\hat{a}_k - \vec{b}||_2^2 = \sum_{i=1}^k \left(c_i^2 - 2c_i\vec{b}\cdot\hat{a}_i\right) + ||\vec{b}||_2^2$$

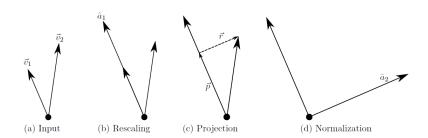
$$\implies c_i = \vec{b} \cdot \hat{a}_i$$

$$||c_1\hat{a}_1 + c_2\hat{a}_2 + \dots + c_k\hat{a}_k - \vec{b}||_2^2 = \sum_{i=1}^k \left(c_i^2 - 2c_i\vec{b}\cdot\hat{a}_i\right) + ||\vec{b}||_2^2$$

$$\implies c_i = \vec{b} \cdot \hat{a}_i$$

$$\implies \operatorname{proj}_{\operatorname{span}\{\hat{a}_1,\cdots,\hat{a}_k\}} \vec{b} = (\hat{a}_1 \cdot \vec{b})\hat{a}_1 + \cdots + (\hat{a}_k \cdot \vec{b})\hat{a}_k$$

Geometric Strategy for Orthogonalization



Gram-Schmidt Orthogonalization

To orthogonalize $\vec{v}_1, \ldots, \vec{v}_k$:

- **1.** $\hat{a}_1 \equiv \frac{\vec{v}_1}{\|\vec{v}_1\|}$.
- **2.** For i from 2 to k,

2.1
$$\vec{p_i} \equiv \text{proj}_{\text{span } \{\hat{a}_1, \dots, \hat{a}_{i-1}\}} \vec{v_i}$$
.

2.2
$$\hat{a}_i \equiv \frac{\vec{v}_i - \vec{p}_i}{\|\vec{v}_i - \vec{p}_i\|}$$
.

Gram-Schmidt Orthogonalization

To orthogonalize $\vec{v}_1, \ldots, \vec{v}_k$:

- **1.** $\hat{a}_1 \equiv \frac{\vec{v}_1}{\|\vec{v}_1\|}$.
- **2.** For i from 2 to k,
 - **2.1** $\vec{p_i} \equiv \text{proj}_{\text{span } \{\hat{a}_1, \dots, \hat{a}_{i-1}\}} \vec{v_i}$.
 - **2.2** $\hat{a}_i \equiv \frac{\vec{v}_i \vec{p}_i}{\|\vec{v}_i \vec{p}_i\|}$.

Claim

span $\{\vec{v}_1,\ldots,\vec{v}_i\}$ = span $\{\hat{a}_1,\ldots,\hat{a}_i\}$ for all i.

Implementation via Column Operations

Post-multiplication!

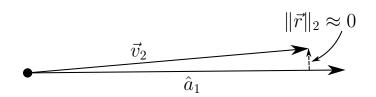
- 1. Rescaling to unit length: diagonal matrix
- 2. Subtracting off projection: upper triangular substitution matrix

New Factorization

A = QR

- ightharpoonup Q orthogonal
- ► R upper-triangular

Bad Case



$$ec{v}_1 = \left(egin{array}{c} 1 \ 1 \end{array}
ight), ec{v}_2 = \left(egin{array}{c} 1 \ 1 + arepsilon \end{array}
ight)$$

Two Strategies for QR

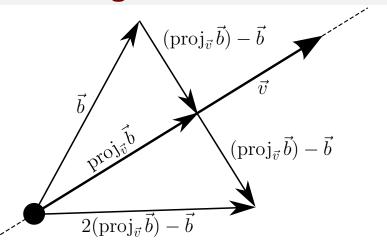
1. Post-multiply by upper triangular matrices

Two Strategies for QR

- 1. Post-multiply by upper triangular matrices

 Done!
- 2. Pre-multiply by orthogonal matrices
 New idea!

"Easy" Class of Orthogonal Matrices



Reflection Matrices

$$2\operatorname{proj}_{\vec{v}}\vec{b} - \vec{b} = 2\frac{\vec{v} \cdot \vec{b}}{\vec{v} \cdot \vec{v}}\vec{v} - \vec{b} \text{ by definition of projection}$$

$$= 2\vec{v} \cdot \frac{\vec{v}^{\top}\vec{b}}{\vec{v}^{\top}\vec{v}} - \vec{b} \text{ using matrix notation}$$

$$= \left(\frac{2\vec{v}\vec{v}^{\top}}{\vec{v}^{\top}\vec{v}} - I_{n \times n}\right)\vec{b}$$

$$\equiv -H_{\vec{v}}\vec{b}, \text{ where } H_{\vec{v}} \equiv I_{n \times n} - \frac{2\vec{v}\vec{v}^{\top}}{\vec{v}^{\top}\vec{v}}.$$

Analogy to Forward Substitution

If \vec{a} is first column,

$$c\vec{e}_1 = H_{\vec{v}}\vec{a}$$

$$\implies \vec{v} = (\vec{a} - c\vec{e}_1) \cdot \frac{\vec{v}^{\top} \vec{v}}{2\vec{v}^{\top} \vec{a}}$$

Analogy to Forward Substitution

If \vec{a} is first column,

$$c\vec{e}_1 = H_{\vec{v}}\vec{a}$$

$$\implies \vec{v} = (\vec{a} - c\vec{e_1}) \cdot \frac{\vec{v}^{\top} \vec{v}}{2\vec{v}^{\top} \vec{a}}$$

Choose
$$\vec{v} = \vec{a} - c\vec{e_1}$$

$$\implies c = \pm \|\vec{a}\|_2$$

After One Step

$$H_{\vec{v}}A = \begin{pmatrix} c & \times & \times & \times \\ 0 & \times & \times & \times \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \times & \times & \times \end{pmatrix}$$

Later Steps

$$\vec{a} = \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \end{pmatrix} \mapsto H_{\vec{v}}\vec{a} = \begin{pmatrix} \vec{a}_1 \\ \vec{0} \end{pmatrix}$$

Leave first k lines alone!

Reduced QR

Householder QR

$$R = H_{\vec{v}_n} \cdots H_{\vec{v}_1} A$$
$$Q = H_{\vec{v}_1}^{\top} \cdots H_{\vec{v}_n}^{\top}$$

Householder QR

$$R = H_{\vec{v}_n} \cdots H_{\vec{v}_1} A$$
$$Q = H_{\vec{v}_1}^{\top} \cdots H_{\vec{v}_n}^{\top}$$

Can store Q implicitly by storing $\vec{v_i}$'s!

Slightly Different Output

- ▶ Gram-Schmidt: $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$
- ightharpoonup Householder: $Q \in \mathbb{R}^{m \times m}$, $R \in \mathbb{R}^{m \times n}$

•000

Slightly Different Output

- ▶ Gram-Schmidt: $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$
- ightharpoonup Householder: $Q \in \mathbb{R}^{m \times m}$, $R \in \mathbb{R}^{m \times n}$

Typical least-squares case:

$$A \in \mathbb{R}^{m \times n}$$
 has $m \gg n$.

Desired

Stability of Householder with shape of Gram-Schmidt.

Shape of R

$$R = \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Reduced QR

$$A = QR$$

$$= (Q_1 Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix}$$

$$= Q_1 R_1$$

