Numerical Integration and Differentiation

Doug James (and Justin Solomon)
Announcements

▸ HW8
 ▸ Extension: Due on Friday
 ▸ Can use late days until Sunday midnight
 ▸ Solutions out Monday

▸ Final Exam
 ▸ Tuesday March 20 @ 3:30-6:30pm
 ▸ Room: Gates B3 (this room)
 ▸ Allowed: Two double-sided pages of written notes (can reuse last one)
Today’s Task

Last time: Find $f(x)$

Today: Find $\int_{a}^{b} f(x) \, dx$ and $f'(x)$
Motivation

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} \, dt \]

Some functions are *defined* using integrals!
Sampling from a Distribution

\[p(x) \in \text{Prob}([0, 1]) \]
Sampling from a Distribution

\[p(x) \in \text{Prob}([0, 1]) \]

Cumulative distribution function (CDF):

\[F(t) \equiv \int_0^t p(x) \, dx \]
Sampling from a Distribution

\[p(x) \in \text{Prob}([0, 1]) \]

Cumulative distribution function (CDF):

\[F(t) \equiv \int_0^t p(x) \, dx \]

\(X \) distributed uniformly in \([0, 1]\) \(\implies F^{-1}(X) \) distributed according to \(p \)
Rendering

“Light leaving a surface is the integral of the light coming in after it is reflected and diffused.”

Rendering equation
Figure 12: Table: This view of our room scene shows chinaware (using a BRDF with both diffuse and specular components), a teapot containing an absorbing medium, and a butter dish on a glossy silver tray. Illumination comes from the chandelier in Figure 11.

Gaussian Blur

\[(I \ast g)(x, y) = \iiint_{\mathbb{R}^2} I(u, v) g(x - u, y - v) \, du \, dv\]
Bayes’ Rule

\[P(X|Y) = \frac{P(Y|X)P(X)}{\int P(Y|X)P(X) \, dX} \]

Probability of \(X \) given \(Y \)
Quadrature

Given a sampling of \(n \) values \(f(x_1), \ldots, f(x_n) \), find an approximation of \(\int_a^b f(x) \, dx \).
Given a sampling of \(n \) values \(f(x_1), \ldots, f(x_n) \), find an approximation of \(\int_a^b f(x) \, dx \).

1. Endpoints may be fixed, or may want to query many \((a, b)\) pairs.

2. May be able to query \(f(x) \) anywhere, or may be given a fixed set of pairs \((x_i, f(x_i))\).
Interpolatory Quadrature

\[
\int_a^b f(x) \, dx = \int_a^b \left[\sum_i a_i \phi_i(x) \right] \, dx = \sum_i a_i \left[\int_a^b \phi_i(x) \, dx \right] = \sum_i c_i a_i \quad \text{for} \quad c_i \equiv \int_a^b \phi_i(x) \, dx
\]

Example 14.6: Monomials \(x^k\) on \([0, 1]\).
Riemann Integral

\[
\int_a^b f(x) \, dx = \lim_{\Delta x_k \to 0} \sum_k f(\tilde{x}_k)(x_{k+1} - x_k) \\
\approx \sum_k f(\tilde{x}_k) \Delta x_k
\]
Quadrature Rules

\[Q[f] \equiv \sum_i w_i f(x_i) \]
Quadrature Rules

\[Q[f] \equiv \sum_{i} w_i f(x_i) \]

\(w_i \) describes the contribution of \(f(x_i) \).
Quadrature Rules

Example 14.7: Method of undetermined coefficients

- Fix quadrature points x_1, x_2, \ldots, x_n.
- Choose n functions $f_1(x), f_2(x), \ldots, f_n(x)$ where
 - $\int_a^b f_i(x) \, dx$ are known for $i = 1, \ldots, n$.
- Solve n-by-n linear system for weights w_1, \ldots, w_n such that

$$w_1 f_i(x_1) + \ldots + w_n f_i(x_n) = \int_a^b f_i(x) \, dx,$$

for $i = 1, \ldots, n$.
Newton-Cotes Quadrature

x_i’s evenly spaced in $[a, b]$ and symmetric
Newton-Cotes Quadrature

x_i’s evenly spaced in $[a, b]$ and symmetric

- **Closed**: includes endpoints

 $x_k \equiv a + \frac{(k - 1)(b - a)}{n - 1}$

- **Open**: does not include endpoints

 $x_k \equiv a + \frac{k(b - a)}{n + 1}$
Midpoint Rule

\[\int_{a}^{b} f(x) \, dx \approx (b - a) f \left(\frac{a + b}{2} \right) \]

Open

\[f(x_1) \]

\[x_1 \]
Trapezoidal Rule

\[
\int_{a}^{b} f(x) \, dx \approx (b - a) \frac{f(a) + f(b)}{2}
\]

Closed
Simpson’s’s Rule

\[\int_{a}^{b} f(x) \, dx \approx \frac{b - a}{6} \left(f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right) \]

Closed; from quadratic interpolation
Composite Rules

Composite midpoint:

\[\int_a^b f(x) \, dx \approx \sum_{i=1}^{k} f \left(\frac{x_{i+1} + x_i}{2} \right) \Delta x \]
Composite Rules

Composite trapezoid:

\[
\int_a^b f(x) \, dx \approx \sum_{i=1}^{k} \left(\frac{f(x_i) + f(x_{i+1})}{2} \right) \Delta x
\]

\[
= \Delta x \left(\frac{1}{2} f(a) + f(x_1) + \cdots + f(x_{k-1}) + \frac{1}{2} f(b) \right)
\]
Composite Simpson:

\[
\int_a^b f(x) \, dx \approx \frac{\Delta x}{3} \left[f(a) + 2 \sum_{i=1}^{n-2} f(x_{2i}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + f(b) \right]
\]

\[
= \frac{\Delta x}{3} \left[f(a) + 4f(x_1) + 2f(x_2) + \cdots + 4f(x_{n-1}) + f(b) \right]
\]

\(n\) must be odd!
Question

Which quadrature rule is best?
Accuracy on a Single Interval

- Midpoint and trapezoid: $O(\Delta x^3)$

- Simpson: $O(\Delta x^5)$

[See Mathematica notebook.]
Composite Accuracy

Number of subintervals \(\approx O\left(\frac{1}{\Delta x}\right) \)

- Midpoint and trapezoid: \(O(\Delta x^2) \)
- Simpson: \(O(\Delta x^4) \)
Other Strategies

- **Gaussian quadrature:** Optimize both w_i’s and x_i’s; gets two times the accuracy (but harder to use!)

- **Adaptive quadrature:** Choose x_i’s where information is needed (e.g. when quadrature strategies do not agree)
Multivariable Integrals I

“Curse of dimensionality”

\[\int_\Omega f(\vec{x}) \, d\vec{x}, \quad \Omega \subseteq \mathbb{R}^n \]

- **Iterated integral**: Apply one-dimensional strategy
- **Subdivision**: Fill with triangles/rectangles, tetrahedra/boxes, etc.
Monte Carlo: Randomly draw points in Ω and average $f(\vec{x})$; converges like $\frac{1}{\sqrt{k}}$ regardless of dimension
Conditioning

Given quadrature scheme

$$Q[f] = \sum_{i=1}^{n} w_i f(x_i)$$

and perturbed function \hat{f}, then

$$\frac{|Q[f] - Q[\hat{f}]|}{\|f - \hat{f}\|_{\infty}} \leq \|\vec{w}\|_{1} \leq n \|\vec{w}\|_{\infty}$$

Note: Norm typo in book.
Differentiation

▶ Lack of stability

▶ Jacobians vs. $f : \mathbb{R} \rightarrow \mathbb{R}$
Differentiation in Basis

\[f'(x) = \sum a_i \phi_i'(x) \]

\(\phi_i'' \)'s basis for derivatives
Differentiation in Basis

\[f'(x) = \sum a_i \phi'_i(x) \]

\(\phi'_i \)'s basis for derivatives

Important for finite element method!
Definition of Derivative

\[f'(x) \equiv \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]
\(O(h) \) Approximations

\[
\begin{align*}
\text{Forward difference:} \\
f'(x) &\approx \frac{f(x + h) - f(x)}{h}
\end{align*}
\]
\(O(h) \) Approximations

Forward difference:

\[
f'(x) \approx \frac{f(x + h) - f(x)}{h}
\]

Backward difference:

\[
f'(x) \approx \frac{f(x) - f(x - h)}{h}
\]
$O(h^2)$ Approximation

Centered difference:

$$f'(x) \approx \frac{f(x + h) - f(x - h)}{2h}$$

\[O(h) \text{ Approximation of } f'' \]

Centered difference:

\[
f''(x) \approx \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}
\]

\[
= \frac{f(x + h) - f(x)}{h} - \frac{f(x) - f(x - h)}{h}
\]
Geometric Interpretation for f''
Deriving Finite Differences Schemes

General case: Want $f^{(k)}(0)$ using an n-sample FD scheme

\[f^{(k)}(0) \approx \sum_{i=1}^{n} c_i f(x_i). \]

Approach: Consider Taylor Series expansions, and solve a linear system (symbolically) to find the coefficients:

\[\sum_{i=1}^{n} c_i f(x_i) \approx \left(\sum_{i} c_i \right) f(0) + \left(\sum_{i} c_i x_i \right) f'(0) + \left(\frac{1}{2!} \sum_{i} c_i (x_i)^2 \right) f''(0) + \ldots \]

So we have $A\vec{c} = \hat{e}_k \implies \vec{c} = A^{-1}\hat{e}_k$ for the k^{th} derivative finite-difference scheme.

See Mathematica notes.

https://en.wikipedia.org/wiki/Finite_difference_coefficient
Choosing h

- **Too big:** Bad approximation of f'
- **Too small:** Numerical issues

$(h$ small, $f(x) \approx f(x + h))$
Richardson Extrapolation

\[D(h) \equiv \frac{f(x + h) - f(x)}{h} = f'(x) + \frac{1}{2}f''(x)h + O(h^2) \]
Richardson Extrapolation

\[D(h) \equiv \frac{f(x + h) - f(x)}{h} = f'(x) + \frac{1}{2} f''(x) h + O(h^2) \]

\[D(\alpha h) = f'(x) + \frac{1}{2} f''(x) \alpha h + O(h^2) \]
Richardson Extrapolation

\[D(h) \equiv \frac{f(x + h) - f(x)}{h} = f'(x) + \frac{1}{2} f''(x)h + O(h^2) \]

\[D(\alpha h) = f'(x) + \frac{1}{2} f''(x)\alpha h + O(h^2) \]

\[
\begin{pmatrix}
 f''(x) \\
 f'''(x)
\end{pmatrix}
= \begin{pmatrix}
 1 & \frac{1}{2}h \\
 1 & \frac{1}{2}\alpha h
\end{pmatrix}^{-1}
\begin{pmatrix}
 D(h) \\
 D(\alpha h)
\end{pmatrix} + O(h^2)
\]

Extrapolation for integration: Romberg Integration