CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Doug James

Instructor

Prof. Doug James

Office: Gates 362

Telephone: (650) 720-0104

Email: djames@cs.stanford.edu

Office hours:

Course Information

000000

Tu 5-6:30pm,

Th 5-7pm (Gates 362)

Webpage:

http://graphics.stanford.edu/~djames

Course Assistants

Mike Roberts

Course Information

000000

Email: mlrobert@stanford.edu

Office hours: TBD (will start 2nd week)

Location: TBD

Ante Qu

Email: antequ@stanford.edu

Office hours: TBD (will start 2nd week)

Location: TBD

Jonathan Leaf

Email: jcleaf@stanford.edu

Office hours: TBD (will start 2nd week)

Location: TBD

Section (optional)

Fridays, Time 11:30am-12:20pm

Location: 260-113 Optional, but useful.

Course assistants cover supplemental material

This Friday's section: "Introduction to Julia"

Course website:

http://graphics.stanford.edu/courses/cs205a-18-winter http://graphics.stanford.edu/courses/cs205a

Piazza:

https://piazza.com/stanford/winter2018/cs205a/

Gradescope: (Registration code: 9P584R) https://gradescope.com/courses/13993

Office hours' Google Hangout: http://bit.ly/2plpwyl

Programming

- ► Text: Numerical Algorithms, Justin Solomon
 - Book available online (PDF), in print, or as an electronic reader
 - Check course web page...
 - Contact Justin with typos
- Optional text: Scientific Computing, Heath

Course Breakdown

- ► Homeworks (approx. weekly): 60% Submit with gradescope
- **► Midterm:** 15%
- Final exam: 25%
- **Participation:** $\pm 5\%$
 - Corrections or comments on text
 - Participation in lecture, office hours, and/or Piazza
 - Extra credit on homework

Quick Survey

- Program?
- Department?
- Math background?

Course Information

000000

Two Roles

Client of numerical methods

Designer of numerical methods

Course Topics I

1. Numerics

Course Information

- Stability and error analysis
- Floating-point representations

2. Linear algebra

- Gaussian elimination and LU
- Column spaces and QR
- Eigenproblems and SVD
- Applications

3. Root-finding and optimization

- Single-variable
- Multivariable
- Constrained optimization

Course Topics II

▶ Iterative linear solvers: Conjugate gradients and friends

4. Interpolation and quadrature

- Approximating integrals
- Approximating derivatives

5. Differential equations

- ▶ ODEs: time-stepping, discretization
- ▶ PDEs: Poisson equation, heat equation, waves
- Techniques: Differencing, finite elements (time-permitting)

Programming in Julia

https://julialang.org

- A powerful modern programming language.
- Programming on each homework assignment!
- JuliaBox: Web-based Julia programming.
 - https://juliabox.com
 - No installation necessary.

Studying for 205A

Be creative!

- Try simple examples
- Write some code
- Re-derive on paper
- Draw pictures
- Ask questions

Official Prerequisites

Math 51: Linear Algebra and Multivariable Calculus and

CS 106B: Programming Abstractions

$$||A\vec{x} - \vec{b}||_{2}^{2} = (A\vec{x} - \vec{b}) \cdot (A\vec{x} - \vec{b})$$

$$= (A\vec{x} - \vec{b})^{\top} (A\vec{x} - \vec{b})$$

$$= (\vec{x}^{\top} A^{\top} - \vec{b}^{\top}) (A\vec{x} - \vec{b})$$

$$= \vec{x}^{\top} A^{\top} A \vec{x} - \vec{x}^{\top} A^{\top} \vec{b} - \vec{b}^{\top} A \vec{x} + \vec{b}^{\top} \vec{b}$$

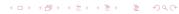
$$= ||A\vec{x}||_{2}^{2} - 2(A^{\top} \vec{b}) \cdot \vec{x} + ||\vec{b}||_{2}^{2}$$

- Gradient vector ∇f for $f: \mathbb{R}^n \to \mathbb{R}$
- ▶ Jacobian Df for $f: \mathbb{R}^m \to \mathbb{R}^n$
- Lagrange multipliers:

$$\min_{\vec{x} \in \mathbb{R}^n} f(\vec{x})$$

s.t. $g(\vec{x}) = 0$

Homework 0


Out Thursday. Due one week later (Thurs midnight)

To review (Chapter 1):

- Linear algebra
- Calculus

Make **ample use** of Piazza & office hours. Submit online using **gradescope**.

