Introduction

Doug James
Instructor

Prof. Doug James

Office: Gates 362
Telephone: (650) 720-0104
Email: djames@cs.stanford.edu
Office hours:
 Tu 5-6:30pm,
 Th 5-7pm (Gates 362)

Webpage:
http://graphics.stanford.edu/~djames
Course Assistants

Mike Roberts
Email: mlrobert@stanford.edu
Office hours: TBD (will start 2nd week)
Location: TBD

Ante Qu
Email: antequ@stanford.edu
Office hours: TBD (will start 2nd week)
Location: TBD

Jonathan Leaf
Email: jcleaf@stanford.edu
Office hours: TBD (will start 2nd week)
Location: TBD
Section (optional)

Fridays, Time 11:30am-12:20pm
Location: 260-113
Optional, but useful.

Course assistants cover supplemental material

This Friday’s section: “Introduction to Julia”
On the Web

Course website:
http://graphics.stanford.edu/courses/cs205a-18-winter
http://graphics.stanford.edu/courses/cs205a

Piazza:
https://piazza.com/stanford/winter2018/cs205a/

Gradescope: (Registration code: 9P584R)
https://gradescope.com/courses/13993

Texts

- **Text:** *Numerical Algorithms*, Justin Solomon
 - Book available online *(PDF)*, in print, or as an electronic reader
 - Check course web page...
 - Contact Justin with typos

- **Optional text:** *Scientific Computing*, Heath
Course Breakdown

- Homeworks (approx. weekly): 60%
 Submit with gradescope
- Midterm: 15%
- Final exam: 25%
- Participation: ±5%
 - Corrections or comments on text
 - Participation in lecture, office hours, and/or Piazza
 - Extra credit on homework
Quick Survey

- Program?
- Department?
- Math background?
Two Roles

- **Client** of numerical methods
- **Designer** of numerical methods
Course Topics I

1. **Numerics**
 - Stability and error analysis
 - Floating-point representations

2. **Linear algebra**
 - Gaussian elimination and LU
 - Column spaces and QR
 - Eigenproblems and SVD
 - Applications

3. **Root-finding and optimization**
 - Single-variable
 - Multivariable
 - Constrained optimization
Course Topics II

- Iterative linear solvers: Conjugate gradients and friends

4. **Interpolation and quadrature**
 - Approximating integrals
 - Approximating derivatives

5. **Differential equations**
 - ODEs: time-stepping, discretization
 - PDEs: Poisson equation, heat equation, waves
 - Techniques: Differencing, finite elements (time-permitting)
Programming in Julia

- A powerful modern programming language.
- Programming on each homework assignment!
- JuliaBox: Web-based Julia programming.
 - https://juliabox.com
 - No installation necessary.

https://julialang.org
Studying for 205A

Be creative!

- Try simple examples
- Write some code
- Re-derive on paper
- Draw pictures
- Ask questions
Official Prerequisites

Math 51: Linear Algebra and Multivariable Calculus and

CS 106B: Programming Abstractions
Typical Linear Algebra

\[\| A\vec{x} - \vec{b}\|_2^2 = (A\vec{x} - \vec{b}) \cdot (A\vec{x} - \vec{b}) \]
\[= (A\vec{x} - \vec{b})^\top (A\vec{x} - \vec{b}) \]
\[= (\vec{x}^\top A^\top - \vec{b}^\top)(A\vec{x} - \vec{b}) \]
\[= \vec{x}^\top A^\top A\vec{x} - \vec{x}^\top A^\top \vec{b} - \vec{b}^\top A\vec{x} + \vec{b}^\top \vec{b} \]
\[= \| A\vec{x}\|_2^2 - 2(A^\top \vec{b}) \cdot \vec{x} + \| \vec{b}\|_2^2 \]
Necessary Calculus

- Gradient vector ∇f for $f : \mathbb{R}^n \to \mathbb{R}$
- Jacobian Df for $f : \mathbb{R}^m \to \mathbb{R}^n$
- Lagrange multipliers:

$$\min_{\vec{x} \in \mathbb{R}^n} f(\vec{x})$$

subject to $g(\vec{x}) = 0$
Homework 0

Out Thursday.
Due one week later (Thurs midnight)

To review (Chapter 1):

► Linear algebra
► Calculus

Make ample use of Piazza & office hours.
Submit online using gradescope.