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Announcements

I Midterm graded

I Discussed in Friday’s Section (see SCPD video)
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Today’s Root-Finding Problems

f : Rn→ Rm
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Announce Multivariable Roots First-Order Approximations Quasi-Newton Automatic Differentiation

One “Easy” Instance

f (~x) = A~x−~b
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Usual Assumption

For f : Rn→ Rm, assume

n ≥ m.

Examples (whiteboard)

CS 205A: Mathematical Methods Nonlinear Systems II: Multiple Variables 5 / 22



Announce Multivariable Roots First-Order Approximations Quasi-Newton Automatic Differentiation

Jacobian

(Df)ij ≡
∂fi
∂xj

How big is Df for
f : Rn→ Rm?
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First-Order Approximation of
f : Rn → Rn

f (~x) ≈ f (~xk) + Df (~xk) · (~x− ~xk)

Newton’s Method:

~xk+1 = ~xk − [Df (~xk)]−1f (~xk)

Review: Do we explicitly compute [Df (~xk)]−1?
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Convergence Sketch

1. ~xk+1 = g(~xk) converges when the

maximum-magnitude eigenvalue of Dg is less

than 1

2. Extend observations about (quadratic)

convergence in multiple dimensions
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Common Examples

On whiteboard:

1. Implicit integration (n = m)

2. Projecting onto constraints (n > m)

· E.g., Robotics (inverse kinematics)
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Two Problems

1. Differentiation is hard

2. Df(~xk) changes
every iteration
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Extend Secant Method?

Direct extensions are
not obvious!
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Observation: Directional Derivative

D~vf = Df · ~v
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Secant-Like Approximation

J · (~xk − ~xk−1)
≈ f(~xk)− f(~xk−1)

where J ≈ Df(~xk)

“Broyden’s Method”
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Broyden’s Method: Outline

I Maintain current iterate ~xk and

approximation Jk of Jacobian near ~xk
I Update ~xk using Newton-like step

I Update Jk using secant-like formula
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Deriving the Broyden Step

minimizeJk ‖Jk − Jk−1‖2Fro
such that Jk · (~xk − ~xk−1) = f (~xk)− f (~xk−1)

Jk = Jk−1+
(f (~xk)− f (~xk−1)− Jk−1 ·∆~x)

‖~xk − ~xk−1‖22
(∆~x)>
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The Newton Step

~xk+1 = ~xk − J−1
k f(~xk)
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Announce Multivariable Roots First-Order Approximations Quasi-Newton Automatic Differentiation

Implementation Details

I How to initialize J0?

Common choice: J0 ≡ I

I Long “memory”—bad approximation?

Limited-memory methods

I Still have to invert Jk in each step!
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Announce Multivariable Roots First-Order Approximations Quasi-Newton Automatic Differentiation

Revisiting the Broyden Step

Jk = Jk−1+
(f (~xk)− f (~xk−1)− Jk−1 ·∆~x)

‖~xk − ~xk−1‖22
(∆~x)>

Simpler form:

Jk = Jk−1 + ~uk~v
>
k
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Announce Multivariable Roots First-Order Approximations Quasi-Newton Automatic Differentiation

Sherman-Morrison Formula

(A + ~u~v>)−1 = A−1 − A−1~u~v>A−1

1 + ~v>A−1~u

Homework: Check this.
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Announce Multivariable Roots First-Order Approximations Quasi-Newton Automatic Differentiation

Broyden Without Inversion

I Start with a J0 for which you know J−10

(e.g. identity)

I Update J−10 directly!

Question: Limited-memory strategy?

Question: Large-scale strategy?
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Automatic Differentiation

(
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dt

)
;
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dy

dt

)
7→(
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dx

dt
+

dy

dt
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JuliaDiff

I http://www.juliadiff.org

I Automatic differentiation of Julia code

I Generates Julia code for the derivative function

I ForwardDiff: Forward mode of automatic

differentiation

I https://github.com/JuliaDiff/ForwardDiff.jl

Next
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