Nonlinear Systems II: Multiple Variables

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)

Announcements

- Midterm graded
- ▶ Discussed in Friday's Section (see SCPD video)

Today's Root-Finding Problems

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

One "Easy" Instance

$$f(\vec{x}) = A\vec{x} - \vec{b}$$

Usual Assumption

For
$$f:\mathbb{R}^n o\mathbb{R}^m$$
, assume $n\geq m$.

Examples (whiteboard)

$$(Df)_{ij} \equiv \frac{\partial f_i}{\partial x_j}$$

$$(Df)_{ij} \equiv \frac{\partial f_i}{\partial x_j}$$

How big is Df for $f:\mathbb{R}^n \to \mathbb{R}^m$?

First-Order Approximation of

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

First-Order Approximation of

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

Newton's Method:

$$\vec{x}_{k+1} = \vec{x}_k - [Df(\vec{x}_k)]^{-1}f(\vec{x}_k)$$

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

$$f(\vec{x}) \approx f(\vec{x}_k) + Df(\vec{x}_k) \cdot (\vec{x} - \vec{x}_k)$$

Newton's Method:

$$\vec{x}_{k+1} = \vec{x}_k - [Df(\vec{x}_k)]^{-1}f(\vec{x}_k)$$

Review: Do we explicitly compute $[Df(\vec{x}_k)]^{-1}$?

Convergence Sketch

1. $\vec{x}_{k+1} = q(\vec{x}_k)$ converges when the maximum-magnitude eigenvalue of Dg is less than 1

2. Extend observations about (quadratic) convergence in multiple dimensions

Common Examples

On whiteboard:

- **1.** Implicit integration (n = m)
- **2.** Projecting onto constraints (n > m)
 - · E.g., Robotics (inverse kinematics)

Two Problems

Quasi-Newton

1. Differentiation is hard

1. Differentiation is hard

2. $Df(\vec{x}_k)$ changes every iteration

Extend Secant Method?

not obvious!

Observation: Directional Derivative

$$D_{\vec{v}}f = Df \cdot \vec{v}$$

Secant-Like Approximation

$$J \cdot (\vec{x}_k - \vec{x}_{k-1})$$
 $pprox f(\vec{x}_k) - f(\vec{x}_{k-1})$ where $J pprox Df(\vec{x}_k)$

$$J \cdot (\vec{x}_k - \vec{x}_{k-1})$$
 $pprox f(\vec{x}_k) - f(\vec{x}_{k-1})$ where $J pprox Df(\vec{x}_k)$

"Broyden's Method"

- ightharpoonup Maintain current iterate \vec{x}_k and approximation J_k of Jacobian near \vec{x}_k
- ightharpoonup Update \vec{x}_k using Newton-like step
- ightharpoonup Update J_k using secant-like formula

Deriving the Broyden Step

minimize_{$$J_k$$} $||J_k - J_{k-1}||^2_{Fro}$
such that $J_k \cdot (\vec{x}_k - \vec{x}_{k-1}) = f(\vec{x}_k) - f(\vec{x}_{k-1})$

Deriving the Broyden Step

Quasi-Newton

minimize_{$$J_k$$} $||J_k - J_{k-1}||^2_{Fro}$
such that $J_k \cdot (\vec{x}_k - \vec{x}_{k-1}) = f(\vec{x}_k) - f(\vec{x}_{k-1})$

$$J_k = J_{k-1} + \frac{(f(\vec{x}_k) - f(\vec{x}_{k-1}) - J_{k-1} \cdot \Delta \vec{x})}{\|\vec{x}_k - \vec{x}_{k-1}\|_2^2} (\Delta \vec{x})^{\top}$$

The Newton Step

$$\vec{x}_{k+1} = \vec{x}_k - J_k^{-1} f(\vec{x}_k)$$

Implementation Details

▶ How to initialize J_0 ?

▶ How to initialize J_0 ?

Common choice: $J_0 \equiv I$

- ► How to initialize J_0 ?
- Common choice: $J_0 \equiv I$
- ► Long "memory"—bad approximation?

First-Order Approximations

► How to initialize J_0 ? Common choice: $J_0 \equiv I$

► Long "memory" —bad approximation? Limited-memory methods

 \blacktriangleright How to initialize J_0 ? Common choice: $J_0 \equiv I$

► Long "memory"—bad approximation? Limited-memory methods

 \triangleright Still have to invert J_k in each step!

Revisiting the Broyden Step

$$J_k = J_{k-1} + \frac{(f(\vec{x}_k) - f(\vec{x}_{k-1}) - J_{k-1} \cdot \Delta \vec{x})}{\|\vec{x}_k - \vec{x}_{k-1}\|_2^2} (\Delta \vec{x})^{\top}$$

Revisiting the Broyden Step

$$J_k = J_{k-1} + \frac{(f(\vec{x}_k) - f(\vec{x}_{k-1}) - J_{k-1} \cdot \Delta \vec{x})}{\|\vec{x}_k - \vec{x}_{k-1}\|_2^2} (\Delta \vec{x})^{\top}$$

Simpler form:

$$J_k = J_{k-1} + \vec{u}_k \vec{v}_k^{\top}$$

$$(A + \vec{u}\vec{v}^{\top})^{-1} = A^{-1} - \frac{A^{-1}\vec{u}\vec{v}^{\top}A^{-1}}{1 + \vec{v}^{\top}A^{-1}\vec{u}}$$

Homework: Check this

Broyden Without Inversion

- ▶ Start with a J_0 for which you know J_0^{-1} (e.g. identity)
- ▶ Update J_0^{-1} directly!

Broyden Without Inversion

Start with a J_0 for which you know J_0^{-1} (e.g. identity)

▶ Update J_0^{-1} directly!

Question: Limited-memory strategy?

Broyden Without Inversion

Start with a J_0 for which you know J_0^{-1} (e.g. identity)

▶ Update J_0^{-1} directly!

Question: Limited-memory strategy? **Question:** Large-scale strategy?

Automatic Differentiation

$$\left(x, \frac{dx}{dt}\right); \left(y, \frac{dy}{dt}\right) \mapsto$$

$$\left(x + y, \frac{dx}{dt} + \frac{dy}{dt}\right)$$

$$\left(xy, \frac{dx}{dt}y + x\frac{dy}{dt}\right) \quad \left(\frac{x}{y}, \frac{y\frac{dx}{dt} + x\frac{dy}{dt}}{y^2}\right) \dots$$

JuliaDiff

- ▶ http://www.juliadiff.org
- Automatic differentiation of Julia code
- Generates Julia code for the derivative function
- ► ForwardDiff: Forward mode of automatic differentiation
- https://github.com/JuliaDiff/ForwardDiff.jl

