Motivation	Representing Numbers	Exotic Representations	Error	Practical Aspects
0000	00000000	00	00000000	00000

Numerics and Error Analysis

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)

CS 205A: Mathematical Methods

Numerics and Error Analysis

Motivation ●○○○	Representing Numbers	Exotic Representations	Error 000000000	Practical Aspects
		A Puzzle		

What is the value of the following expression?

$$abs(3.*(4./3.-1.)-1.)$$

Image: Image:

э

Motivation • 000	Representing Numbers	Exotic Representations	Error 000000000	Practical Aspects					
	A Puzzle								

What is the value of the following expression?

$$abs(3.*(4./3.-1.)-1.)$$

Machine precision ε_m : smallest ε_m with $1 + \varepsilon_m \not\cong 1$

CS 205A: Mathematical Methods

3

イロト 不得 トイヨト イヨト

Representing Numbers

Exotic Representations

Error

Practical Aspects

Take-Away

Mathematically correct ≠ *Numerically* sound

CS 205A: Mathematical Methods

Numerics and Error Analysis

4 / 30

(人間) 人 ヨト 人 ヨト

Motivation ○○○● Representing Numbers

Exotic Representations

Error

Practical Aspects

Using Tolerances

3

イロト 不得 トイヨト イヨト

Representing Numbers

Exotic Representations

Error

Practical Aspects

Counting in Binary: Integer

463 = 256 + 128 + 64 + 8 + 4 + 2 + 1= $2^8 + 2^7 + 2^6 + 2^3 + 2^2 + 2^1 + 2^0$

1	1	1	0	0	1	1	1	1
2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^3	2^2	2^{1}	2^{0}

CS 205A: Mathematical Methods

Numerics and Error Analysis

6 / 30

Exotic Representations

Error

Practical Aspects

Counting in Binary: Fractional

$463.25 = 256 + 128 + 64 + 8 + 4 + 2 + 1 + \frac{1}{4}$ $= 2^8 + 2^7 + 2^6 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-2}$

1	1	1	0	0	1	1	1	1.	0	1
2^{8}	2^{7}	2^{6}	2^5	2^{4}	2^3	2^{2}	2^{1}	2^{0}	2^{-1}	2^{-2}

CS 205A: Mathematical Methods

Numerics and Error Analysis

7 / 30

3

Representing Numbers

Exotic Representations

Error

Practical Aspects

Familiar Problem

$\frac{1}{3} = 0.0101010101\ldots_2$

Finite number of bits

CS 205A: Mathematical Methods

Numerics and Error Analysis

8 / 30

Representing Numbers

Exotic Representations

Error

Practical Aspects

Fixed-Point Arithmetic

- Parameters: $k, \ell \in \mathbb{Z}$
- $k + \ell + 1$ digits total
- Can reuse integer arithmetic (fast; GPU possibility):

$$a+b = (a \cdot 2^k + b \cdot 2^k) \cdot 2^{-k}$$

CS 205A: Mathematical Methods

Representing Numbers

Exotic Representations

Error

Practical Aspects

Two-Digit Example

$0.1_2 \times 0.1_2 = 0.01_2 \cong 0.0_2$

Multiplication and division easily change order of magnitude!

CS 205A: Mathematical Methods

 Motivation
 Representing Numbers
 Exotic Representations
 Error
 Practical Aspects

 0000
 000000000
 00
 000000000
 000000000
 000000000

Demand of Scientific Applications

$9.11\times 10^{-31} \to 6.022\times 10^{23}$

Desired: Graceful transition

CS 205A: Mathematical Methods

Numerics and Error Analysis

Representing Numbers

Exotic Representations

Error

Practical Aspects

Observations

Compactness matters:

$6.022 \times 10^{23} = 602,200,000,000,000,000,000,000,000$

CS 205A: Mathematical Methods

Numerics and Error Analysis

12 / 30

Representing Numbers

Exotic Representations

Error

Practical Aspects

Observations

Compactness matters:

$6.022 \times 10^{23} = 602,200,000,000,000,000,000,000,000$

Some operations are unlikely:

$6.022 \times 10^{23} + 9.11 \times 10^{-31}$

CS 205A: Mathematical Methods

Numerics and Error Analysis

12 / 30

Representing Numbers

Exotic Representations

Error

Practical Aspects

Scientific Notation

Store *significant* digits

- Base: $b \in \mathbb{N}$
- Precision: $p \in \mathbb{N}$
- Range of exponents: $e \in [L, U]$

 Motivation
 Representing Numbers
 Exotic Representations
 Error
 Practical Aspects

 0000
 00000000
 00
 00000000
 00000000
 00000000

Properties of Floating Point

Unevenly spaced

• Machine precision ε_m : smallest ε_m with $1 + \varepsilon_m \not\cong 1$

CS 205A: Mathematical Methods

 Motivation
 Representing Numbers
 Exotic Representations
 Error
 Practical Aspects

 0000
 00000000
 00
 00000000
 00000000
 00000000

Properties of Floating Point

- Unevenly spaced
 - Machine precision ε_m : smallest ε_m with $1 + \varepsilon_m \not\cong 1$
- Needs rounding rule
 - (e.g. "round to nearest, ties to even")

 Motivation
 Representing Numbers
 Exotic Representations
 Error
 Practical Aspects

 0000
 00000000
 00
 00000000
 00000000
 00000000

Properties of Floating Point

- Unevenly spaced
 - Machine precision ε_m : smallest ε_m with $1 + \varepsilon_m \not\cong 1$
- Needs rounding rule

 (e.g. "round to nearest, ties to even")
- Can remove leading 1

Representing Numbers

Exotic Representations

Error

Practical Aspects

Infinite Precision

$$\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}\}$$

- Simple rules: a/b + c/d = (ad+cb)/bd
- Redundant: 1/2 = 2/4
- Blowup:

 $\frac{1}{100} + \frac{1}{101} + \frac{1}{102} + \frac{1}{103} + \frac{1}{104} + \frac{1}{105} = \frac{188463347}{3218688200}$

• Restricted operations: $2 \mapsto \sqrt{2}$

Representing Numbers

Exotic Representations

Error

Practical Aspects

Bracketing

Store range $a \pm \varepsilon$

- Special case of "Interval Arithmetic"
- Keeps track of certainty and rounding decisions
- Easy bounds:

 $(x \pm \varepsilon_1) + (y \pm \varepsilon_2) = (x + y) \pm (\varepsilon_1 + \varepsilon_2 + \operatorname{error}(x + y))$

Implementation via operator overloading

Representing Numbers

Exotic Representations

Error •00000000 Practical Aspects

Sources of Error

- Rounding
- Discretization
- Modeling
- Input

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representing Numbers

Exotic Representations

Error

Practical Aspects

Example

What sources of error might affect a financial simulation?

CS 205A: Mathematical Methods

Numerics and Error Analysis

18 / 30

Representing Numbers

Exotic Representations

Error

Practical Aspects

Example

Catastrophic cancellation

Consider the function

$$f(x) = \frac{e^x - 1}{x} - 1$$

near x = 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representing Numbers

Exotic Representations

Error 000000000 Practical Aspects

Absolute vs. Relative Error

Absolute Error

The *difference* between the approximate value and the underlying true value

Representing Numbers

Exotic Representations

Error

Practical Aspects

Absolute vs. Relative Error

Absolute Error

The *difference* between the approximate value and the underlying true value

Relative Error

Absolute error divided by the true value

・ 同 ト ・ ヨ ト ・ ヨ ト

Representing Numbers

Exotic Representations

Error

Practical Aspects

Absolute vs. Relative Error

Absolute Error

The *difference* between the approximate value and the underlying true value

Relative Error

Absolute error divided by the true value

2 in ± 0.02 in 2 in $\pm 1\%$

CS 205A: Mathematical Methods

Numerics and Error Analysis

20 / 30

(人間) 人 ヨト 人 ヨト

Representing Numbers

Exotic Representations

Error

Practical Aspects

Relative Error: Difficulty

Problem: Generally not computable

CS 205A: Mathematical Methods

Numerics and Error Analysis

21 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > <

Representing Numbers

Exotic Representations

Error

Practical Aspects

Relative Error: Difficulty

Problem: Generally not computable

Common fix: Be conservative

CS 205A: Mathematical Methods

Numerics and Error Analysis

21 / 30

 Motivation
 Representing Numbers
 Exotic Representations
 Error
 Practical Aspects

 0000
 000000000
 00
 000000000
 000000000
 000000000

Computable Measures of Success

Root-finding problem

For $f : \mathbb{R} \to \mathbb{R}$, find x^* such that $f(x^*) = 0$.

Actual output: x_{est} with $|f(x_{est})| \ll 1$

CS 205A: Mathematical Methods

Representing Numbers

Exotic Representations

Error

Practical Aspects

Backward Error

Backward Error

The amount the problem statement would have to change to make the approximate solution exact

CS 205A: Mathematical Methods

Representing Numbers

Exotic Representations

Error

Practical Aspects

Backward Error

Backward Error

The amount the problem statement would have to change to make the approximate solution exact

Example 1: \sqrt{x}

CS 205A: Mathematical Methods

Numerics and Error Analysis

23 / 30

(人間) 人 ヨト 人 ヨト

Representing Numbers

Exotic Representations

Error

Practical Aspects

Backward Error

Backward Error

The amount the problem statement would have to change to make the approximate solution exact

Example 1: \sqrt{x}

Example 2: $A\vec{x} = \vec{b}$

CS 205A: Mathematical Methods

Numerics and Error Analysis

23 / 30

Representing Numbers

Exotic Representations

Error

Practical Aspects

Conditioning

Well-conditioned:

Small backward error \implies small forward error

Poorly conditioned: Otherwise

Example: Root-finding

CS 205A: Mathematical Methods

Numerics and Error Analysis

Representing Numbers

Exotic Representations

Error

Practical Aspects

Condition Number

Condition number Ratio of forward to backward error

CS 205A: Mathematical Methods

Numerics and Error Analysis

25 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representing Numbers

Exotic Representations

Error

Practical Aspects

Condition Number

Condition number Ratio of forward to backward error

Root-finding example:

CS 205A: Mathematical Methods

Numerics and Error Analysis

25 / 30

(人間) くほう くほう

Representing Numbers

Exotic Representations

Error 000000000 Practical Aspects

Theme

Extremely careful implementation can be necessary.

CS 205A: Mathematical Methods

Numerics and Error Analysis

26 / 30

Representing Numbers
000000000Exotic Representations
0000000000Error
00000000000Practical Aspects
00000000000Example: $\|\vec{x}\|_2$

double normSquared = 0; for (int i = 0; i < n; i++) normSquared += x[i]*x[i]; return sqrt(normSquared);

Motivation

Representing Numbers

Exotic Representations

Error

Practical Aspects

Improved
$$\|\vec{x}\|_2$$

double maxElement = epsilon;

for (int i = 0; i < n; i++)
maxElement = max(maxElement, fabs(x[i]));</pre>

for (int i = 0; i < n; i++) {
 double scaled = x[i] / maxElement;
 normSquared += scaled*scaled;
}</pre>

return sqrt(normSquared) * maxElement;

CS 205A: Mathematical Methods

э

Representing Numbers

Motivation

Exotic Representations

Error

Practical Aspects

Motivation for Kahan Algorithm

$$\left(\left(a+b\right)-a\right)-b\stackrel{?}{=}0$$

Store compensation value!

Details in textbook

Next

CS 205A: Mathematical Methods

Numerics and Error Analysis

30 / 30