nounce	Constrained	Problem	
	00		

Ar

Motivation

Algorithms

Convex Optimization

Optimization III: Constrained Optimization

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)

Announce	Constrained Problems	Motivation	Optimality
•	00	00000	000000000

Algorithms

Convex Optimization

Announcements

- HW6 due today
- HW7 out
- HW8 (last homework) out next Thursday

Constrained Problems

Motivation

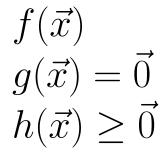
Optimality

Algorithms

Convex Optimization

Constrained Problems

minimize $f(\vec{x})$ such that $g(\vec{x}) = 0$



CS 205A: Mathematical Methods Optimization III: Constrained Optimization 3 / 28

- 4 目 ト - 4 日 ト

Announce

Constrained Problems

Motivation

Algorithms

Convex Optimization

Really Difficult!

Simultaneously:

- . Minimizing f
- Finding roots of g
- Finding feasible points of *h*

・ 同 ト ・ ヨ ト ・ ヨ ト

Announce

Constrained Problems

Motivation

Optimality 0000000000000 Algorithms

Convex Optimization

Implicit Projection

Implicit surface: $g(\vec{x}) = 0$

Announce Constr 0 00

Constrained Problems

Motivation

Optimality 0000000000000 Algorithms

Convex Optimization

Implicit Projection

Implicit surface: $g(\vec{x}) = 0$

Example: Closest point on surface

minimize_{\vec{x}} $\|\vec{x} - \vec{x}_0\|_2$ such that $g(\vec{x}) = 0$

Nonnegative Least-Squares

$\begin{array}{l} \text{minimize}_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 \\ \text{such that} \ \vec{x} \ge \vec{0} \end{array}$

CS 205A: Mathematical Methods Optimization III: Constrained Optimization

mality 0000000000 Algorithms

Convex Optimization

Manufacturing

- ▶ *m* materials
- s_i units of material i in stock
- ▶ n products
- p_j profit for product j
- Product j uses c_{ij} units of material i

Announce Constrained Problems

olems Motivation

Optimality

Algorithms

Convex Optimization

Manufacturing

Linear programming problem:

$$\begin{array}{ll} \text{maximize}_{\vec{x}} & \sum_{j} p_{j} x_{j} \\ \text{such that} & x_{j} \geq 0 \ \forall j \\ & \sum_{j} c_{ij} x_{j} \leq s_{i} \ \forall i \end{array}$$

"Maximize profits where you make a positive amount of each product and use limited material." Announce Constrain

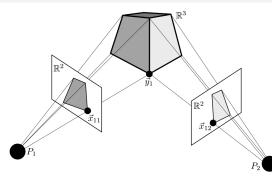
Constrained Problems

Motivation

Optimality 0000000000000 Algorithms

Convex Optimization

Bundle Adjustment



 $\begin{array}{l} \min_{\vec{y}_j, P_i} \sum_{ij} \|P_i \vec{y}_j - \vec{x}_{ij}\|_2^2 \\ \text{s.t.} \quad P_i \text{ orthogonal } \forall i \end{array}$

Applications:

Bundler

Building Rome in a Day

Constrained Problems

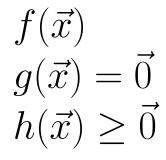
Motivation

Optimality Algorithms

Convex Optimization

Constrained Problems

minimize $f(\vec{x})$ such that $g(\vec{x}) = 0$



CS 205A: Mathematical Methods Optimization III: Constrained Optimization 10 / 28

- 4 目 ト - 4 日 ト

Α		0	u	n	С	e	
0							

Constrained Problems

Motivation

 Algorithms

Convex Optimization

Basic Definitions

Feasible point and feasible set

A feasible point is any point \vec{x} satisfying $g(\vec{x}) = \vec{0}$ and $h(\vec{x}) \ge \vec{0}$. The feasible set is the set of all points \vec{x} satisfying these constraints.

A	nn	0	uı	10	е	
0						

Motivation

 Algorithms

Convex Optimization

Basic Definitions

Feasible point and feasible set

A feasible point is any point \vec{x} satisfying $g(\vec{x}) = \vec{0}$ and $h(\vec{x}) \ge \vec{0}$. The feasible set is the set of all points \vec{x} satisfying these constraints.

Critical point of constrained optimization

A critical point is one satisfying the constraints that also is a local maximum, minimum, or saddle point of f within the feasible set.

Differential Optimality

Without h: $\Lambda(\vec{x}, \vec{\lambda}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x})$ Lagrange Multipliers

CS 205A: Mathematical Methods Optimization III: Constrained Optimization

Inequality Constraints at \vec{x}^*

Optimality

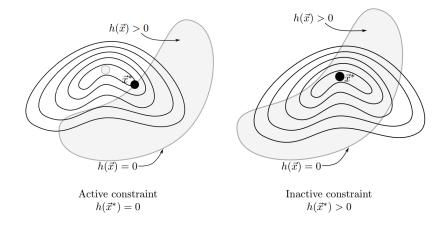
Algorithms

Convex Optimization

Motivation

Announce

Constrained Problems



Motivation

 Algorithms

Convex Optimization

Inequality Constraints at \vec{x}^*

Two cases:

- Active: h_i(x*) = 0
 Optimum might change if constraint is removed
- ► Inactive: h_i(x^{*}) > 0 Removing constraint does not change x^{*} locally

Remove inactive constraints and make active constraints equality constraints.

Lagrange Multipliers

$$\Lambda(\vec{x},\vec{\lambda},\vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x})$$

No longer a critical point! But if we ignore that:

$$\vec{0} = \nabla f(\vec{x}) - \sum_{i} \lambda_i \nabla g_i(\vec{x}) - \sum_{j} \mu_j \nabla h_j(\vec{x})$$

Lagrange Multipliers

$$\Lambda(\vec{x},\vec{\lambda},\vec{\mu}) \equiv f(\vec{x}) - \vec{\lambda} \cdot g(\vec{x}) - \vec{\mu} \cdot h(\vec{x})$$

No longer a critical point! But if we ignore that:

$$\vec{0} = \nabla f(\vec{x}) - \sum_{i} \lambda_i \nabla g_i(\vec{x}) - \sum_{j} \mu_j \nabla h_j(\vec{x})$$

$$\mu_j h_j(\vec{x}) = 0$$

Zero out inactive constraints!

So far: Have not distinguished between $h_j(\vec{x}) \ge 0$ and $h_j(\vec{x}) \le 0$

CS 205A: Mathematical Methods Optimization III: Constrained Optimization

・ 同 ト ・ ヨ ト ・ ヨ ト

So far: Have not distinguished between $h_j(\vec{x}) \ge 0$ and $h_j(\vec{x}) \le 0$

- Direction to decrease $f: -\nabla f(\vec{x}^*)$
- Direction to decrease h_j : $-\nabla h_j(\vec{x}^*)$

(4 同) (ヨ) (ヨ)

So far: Have not distinguished between $h_j(\vec{x}) \ge 0$ and $h_j(\vec{x}) \le 0$

- Direction to decrease $f: -\nabla f(\vec{x}^*)$
- Direction to decrease $h_j: -\nabla h_j(\vec{x}^*)$

$$\nabla f(\vec{x}^*) \cdot \nabla h_j(\vec{x}^*) \ge 0$$

(4 同) (ヨ) (ヨ)

	nr	101	un	се
~				

Constrained Problems

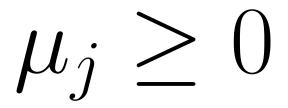
Motivation

Optimality

Algorithms

Convex Optimization

Dual Feasibility



nnounce	Constrair		
	00		

nstrained Problems

Motivation

 Algorithms

Convex Optimization

KKT Conditions

Theorem (Karush-Kuhn-Tucker (KKT) conditions) $ec{x^*} \in \mathbb{R}^n$ is a critical point when there exist $ec{\lambda} \in \mathbb{R}^m$ and $\vec{\mu} \in \mathbb{R}^p$ such that: $\bullet \vec{0} = \nabla f(\vec{x}^*) - \sum_i \lambda_i \nabla g_i(\vec{x}^*) - \sum_j \mu_j \nabla h_j(\vec{x}^*)$ ("stationarity") • $g(\vec{x}^*) = \vec{0}$ and $h(\vec{x}) \ge \vec{0}$ ("primal feasibility") • $\mu_i h_i(\vec{x}^*) = 0$ for all j ("complementary slackness")

• $\mu_j \ge 0$ for all j ("dual feasibility")

KKT Example from Book

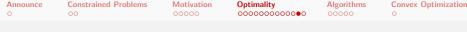
Example 10.6 (KKT conditions). Suppose we wish to solve the following optimization (proposed by R. Israel, UBC Math 340, Fall 2006):

maximize xysubject to $x + y^2 \le 2$ $x, y \ge 0.$

In this case we will have no λ 's and three μ 's. We take f(x, y) = -xy, $h_1(x, y) \equiv 2 - x - y^2$, $h_2(x, y) = x$, and $h_3(x, y) = y$. The KKT conditions are:

Stationarity:
$$0 = -y + \mu_1 - \mu_2$$

 $0 = -x + 2\mu_1 y - \mu_3$
Primal feasibility: $x + y^2 \le 2$
 $x, y \ge 0$
Complementary slackness: $\mu_1(2 - x - y^2) = 0$
 $\mu_2 x = 0$
 $\mu_3 y = 0$
Dual feasibility: $\mu_1, \mu_2, \mu_3 \ge 0$



KKT Example from Book

Example 10.7 (Linear programming). Consider the optimization:

 $\begin{array}{l} \text{minimize}_{\vec{x}} \ \vec{b} \cdot \vec{x} \\ \text{subject to } A \vec{x} \geq \vec{c}. \end{array}$

Example 10.2 can be written this way. The KKT conditions for this problem are:

Stationarity: $A^{\top} \vec{\mu} = \vec{b}$ Primal feasibility: $A\vec{x} \ge \vec{c}$ Complementary slackness: $\mu_i(\vec{a}_i \cdot \vec{x} - c_i) = 0 \ \forall i$, where \vec{a}_i^{\top} is row *i* of *A* Dual feasibility: $\vec{\mu} \ge \vec{0}$

イロト 不得 トイヨト イヨト 二日

Physical Illustration of KKT

Example: Minimal gravitational-potential-energy position $\vec{x} = (x_1, x_2)^T$ of a particle attached to inextensible rod (of length ℓ), and above a hard surface.

$$\begin{array}{ll} \text{minimize}_{\vec{x}} & x_2 & \text{(Minimize gravitational potential energy}\\ \text{such that} & \|\vec{x} - \vec{c}\|_2 - \ell = 0 & \text{(rod of length ℓ attached at \vec{c})}\\ & x_2 \ge 0 & \text{(height ≥ 0)} \end{array}$$

Physical interpretation of f, g, h, λ and μ ? Physical interpretation of stationarity, primal feasibility, complementary slackness and dual feasibility? Sequential Quadratic Programming (SQP)

Optimality

Algorithms

Convex Optimization

Motivation

$$\vec{x}_{k+1} \equiv \vec{x}_k + \arg\min_{\vec{d}} \left[\frac{1}{2} \vec{d}^{\top} H_f(\vec{x}_k) \vec{d} + \nabla f(\vec{x}_k) \cdot \vec{d} \right]$$

such that $g_i(\vec{x}_k) + \nabla g_i(\vec{x}_k) \cdot \vec{d} = 0$
 $h_i(\vec{x}_k) + \nabla h_i(\vec{x}_k) \cdot \vec{d} \ge 0$

CS 205A: Mathematical Methods Optimization III: Constrained Optimization

Constrained Problems

Announce

23 / 28

Equality Constraints Only

Optimality

Algorithms

00000

Convex Optimization

Motivation

$$\begin{pmatrix} H_f(\vec{x}_k) & [Dg(\vec{x}_k)]^\top \\ Dg(\vec{x}_k) & 0 \end{pmatrix} \begin{pmatrix} \vec{d} \\ \vec{\lambda} \end{pmatrix} = \begin{pmatrix} -\nabla f(\vec{x}_k) \\ -g(\vec{x}_k) \end{pmatrix}$$

▶ Can approximate H_f
 ▶ Can limit distance along d

Constrained Problems

Announce

Active set methods: Keep track of active constraints and enforce as equality, update based on gradient

CS 205A: Mathematical Methods Optimization III: Constrained Optimization

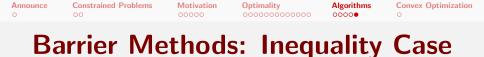


Barrier Methods: Equality Case

$$f_{\rho}(\vec{x}) \equiv f(\vec{x}) + \rho \|g(\vec{x})\|_2^2$$

Unconstrained optimization, crank up ρ until $g(\vec{x}) \thickapprox \vec{0}$

Caveat: $H_{f_{\rho}}$ becomes poorly conditioned



Inverse barrier: $\frac{1}{h_i(\vec{x})}$ Logarithmic barrier: $-\log h_i(\vec{x})$

CS 205A: Mathematical Methods Optimization III: Constrained Optimization

To Read: Convex Programming

A ray of hope: Minimizing convex functions with convex constraints

28 / 28