
Announce Constrained Problems Motivation Optimality Algorithms Convex Optimization

Optimization III:
Constrained Optimization

CS 205A:
Mathematical Methods for Robotics, Vision, and Graphics

Doug James (and Justin Solomon)

CS 205A: Mathematical Methods Optimization III: Constrained Optimization 1 / 28



Announce Constrained Problems Motivation Optimality Algorithms Convex Optimization

Announcements

I HW6 due today

I HW7 out

I HW8 (last homework) out next Thursday

CS 205A: Mathematical Methods Optimization III: Constrained Optimization 2 / 28



Announce Constrained Problems Motivation Optimality Algorithms Convex Optimization

Constrained Problems

minimize f (~x)

such that g(~x) = ~0

h(~x) ≥ ~0
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Really Difficult!

Simultaneously:
I Minimizing f
I Finding roots of g
I Finding feasible points
of h
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Implicit Projection

Implicit surface: g(~x) = 0

Example: Closest point on surface

minimize~x ‖~x− ~x0‖2

such that g(~x) = 0
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Nonnegative Least-Squares

minimize~x ‖A~x−~b‖2
2

such that ~x ≥ ~0
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Manufacturing

I m materials

I si units of material i in stock

I n products

I pj profit for product j

I Product j uses cij units of material i
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Manufacturing

Linear programming problem:

maximize~x
∑

j pjxj
such that xj ≥ 0 ∀j∑

j cijxj ≤ si ∀i

“Maximize profits where you make a positive

amount of each product and use limited

material.”
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Bundle Adjustment

min~yj ,Pi

∑
ij ‖Pi~yj − ~xij‖22

s.t. Pi orthogonal ∀i

Applications:

I Bundler

I Building Rome in a Day
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Basic Definitions

Feasible point and feasible set

A feasible point is any point ~x satisfying g(~x) = ~0 and
h(~x) ≥ ~0. The feasible set is the set of all points ~x
satisfying these constraints.

Critical point of constrained optimization

A critical point is one satisfying the constraints that
also is a local maximum, minimum, or saddle point of
f within the feasible set.
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Differential Optimality

Without h:

Λ(~x,~λ) ≡ f (~x)− ~λ · g(~x)

Lagrange Multipliers
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Inequality Constraints at ~x∗
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Inequality Constraints at ~x∗

Two cases:

I Active: hi(~x∗) = 0

Optimum might change if constraint is

removed

I Inactive: hi(~x∗) > 0

Removing constraint does not change ~x∗

locally
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Idea

Remove inactive constraints and make active

constraints equality constraints.
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Lagrange Multipliers

Λ(~x,~λ, ~µ) ≡ f(~x)− ~λ · g(~x)− ~µ · h(~x)

No longer a critical point! But if we ignore that:

~0 = ∇f(~x)−
∑
i

λi∇gi(~x)−
∑
j

µj∇hj(~x)

µjhj(~x) = 0

Zero out inactive constraints!
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Inequality Direction

So far: Have not distinguished between

hj(~x) ≥ 0 and hj(~x) ≤ 0

I Direction to decrease f : −∇f (~x∗)

I Direction to decrease hj: −∇hj(~x∗)
∇f (~x∗) · ∇hj(~x∗) ≥ 0
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Dual Feasibility

µj ≥ 0
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KKT Conditions

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

~x∗ ∈ Rn is a critical point when there exist ~λ ∈ Rm and
~µ ∈ Rp such that:

I ~0 = ∇f(~x∗)−
∑

i λi∇gi(~x∗)−
∑

j µj∇hj(~x∗)
(“stationarity”)

I g(~x∗) = ~0 and h(~x) ≥ ~0 (“primal feasibility”)

I µjhj(~x
∗) = 0 for all j (“complementary slackness”)

I µj ≥ 0 for all j (“dual feasibility”)
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KKT Example from Book
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Physical Illustration of KKT

Example: Minimal gravitational-potential-energy
position ~x = (x1, x2)

T of a particle attached to
inextensible rod (of length `), and above a hard
surface.

minimize~x x2 (Minimize gravitational potential energy)

such that ‖~x− ~c‖2 − ` = 0 (rod of length ` attached at ~c)

x2 ≥ 0 (height ≥ 0)

Physical interpretation of f , g, h, λ and µ?
Physical interpretation of stationarity, primal feasibility,
complementary slackness and dual feasibility?
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Sequential Quadratic Programming
(SQP)

~xk+1 ≡ ~xk+ arg min
~d

[
1

2
~d>Hf(~xk)~d+∇f(~xk) · ~d

]
such that gi(~xk) +∇gi(~xk) · ~d = 0

hi(~xk) +∇hi(~xk) · ~d ≥ 0

CS 205A: Mathematical Methods Optimization III: Constrained Optimization 23 / 28



Announce Constrained Problems Motivation Optimality Algorithms Convex Optimization

Equality Constraints Only

(
Hf(~xk) [Dg(~xk)]

>

Dg(~xk) 0

)(
~d
~λ

)
=

(
−∇f (~xk)

−g(~xk)

)

I Can approximate Hf

I Can limit distance along ~d
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Inequality Constraints

Active set methods:
Keep track of active constraints and enforce as

equality, update based on gradient

CS 205A: Mathematical Methods Optimization III: Constrained Optimization 25 / 28



Announce Constrained Problems Motivation Optimality Algorithms Convex Optimization

Barrier Methods: Equality Case

fρ(~x) ≡ f (~x) + ρ‖g(~x)‖2
2

Unconstrained optimization, crank up ρ until

g(~x) ≈ ~0

Caveat: Hfρ becomes poorly conditioned
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Barrier Methods: Inequality Case

Inverse barrier:
1

hi(~x)

Logarithmic barrier: − log hi(~x)
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To Read: Convex Programming

A ray of hope:
Minimizing convex functions

with convex constraints

Next
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